• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

米曲霉磷酸果糖激酶基因克隆及序列分析

张卡 杜钰 陈宏文

张卡, 杜钰, 陈宏文. 米曲霉磷酸果糖激酶基因克隆及序列分析[J]. 福建农业学报, 2013, 28(6): 584-588. doi: 10.19303/j.issn.1008-0384.2013.06.016
引用本文: 张卡, 杜钰, 陈宏文. 米曲霉磷酸果糖激酶基因克隆及序列分析[J]. 福建农业学报, 2013, 28(6): 584-588. doi: 10.19303/j.issn.1008-0384.2013.06.016
ZHANG Ka, DU Yu, CHEN Hong-wen. Cloning and Sequence Analysis Phosphofructokinase Gene from Aspergillus oryzae[J]. Fujian Journal of Agricultural Sciences, 2013, 28(6): 584-588. doi: 10.19303/j.issn.1008-0384.2013.06.016
Citation: ZHANG Ka, DU Yu, CHEN Hong-wen. Cloning and Sequence Analysis Phosphofructokinase Gene from Aspergillus oryzae[J]. Fujian Journal of Agricultural Sciences, 2013, 28(6): 584-588. doi: 10.19303/j.issn.1008-0384.2013.06.016

米曲霉磷酸果糖激酶基因克隆及序列分析

doi: 10.19303/j.issn.1008-0384.2013.06.016
基金项目: 

中央高校基本科研业务费专项资金项目(JB-ZR1112)

福建省自然科学基金(2013)

华侨大学科研基金项目(12BS132)

详细信息
    作者简介:

    张卡(1987-),男,硕士研究生,研究方向:代谢工程(E-mail:zhang-karl@163.com);陈宏文(1969-),女,副教授,硕士生导师,研究方向:基因工程及代谢工程(E-mail:chenhw@hqu.edu.cn)

  • 中图分类号: Q785

Cloning and Sequence Analysis Phosphofructokinase Gene from Aspergillus oryzae

  • 摘要: 磷酸果糖激酶(PFK)是糖酵解途径的重要调控酶。以酿酒米曲霉CICC2012为材料,克隆获得PFK基因pfkA(GenBank登录号:KC113503.1)。序列分析表明:pfkA序列长度为2 722bp,含有2个内含子,开放阅读框长2 358bp;PFK为785个氨基酸组成的亲水蛋白,分子量86.0kDa,等电点6.38,含有2个PFK家族指纹结构;二级结构包含42.68%的α-螺旋,14.27%的β-折叠和43.06%的无规则卷曲;同源建模三级结构PFK含有N端和C端的2个结构域,底物果糖-6-磷酸结合于N端结构域。采用进化树分析,发现米曲霉PFK与丝状真菌PFK亲缘性较近。
  • [1] 郑集,陈钧辉.普通生物化学[M].第3版.北京:高等教育出版社,2007:377-378.
    [2] PAPAGIANNI M,AVRAMIDIS N.Lactococcus lactis as a cellfactory:a twofold increase in phosphofructokinase activityresults in a proportional increase in specific rates of glucoseuptake and lactate formation[J].Enzyme and microbialtechnology,2011,49(2):197-202.
    [3] PAPAGIANNI M,AVRAMIDIS N.Engineering the centralpathways in Lactococcus lactis:functional expression of thephosphofructokinase(pfk)and alternative oxidase(aox1)genesfrom Aspergillus niger in Lactococcus lactis facilitates improvedcarbon conversion rates under oxidizing conditions[J].Enzymeand microbial technology,2012,51(3):125-130.
    [4] QIN Y,LIU L M,LI C H,et al.Accelerating glycolytic fluxof Torulopsis glabrata CCTCC M202019at high oxidoreductionpotential created using potassium ferricyanide[J].BiotechnolProg,2010,26(6):1551-1557.
    [5] JONATHAN W,CHIN P C C.Improved NADPH supply forxylitol production by engineered Escherichia coli with glycolyticmutations[J].Biotechnology Progress,2011,27(2):333-341.
    [6] SIEDLER S,BRINGER S,BLANK L M,et al.Engineeringyield and rate of reductive biotransformation in Escherichia coliby partial cyclization of the pentose phosphate pathway andPTS-independent glucose transport[J].Appl MicrobiolBiotechnol,2012,93(4):1459-1467.
    [7] SIEDLER S,BRINGER S,BOTT M.Increased NADPHavailability in Escherichia coli:improvement of the product perglucose ratio in reductive whole-cell biotransformation[J].Appl Microbiol Biotechnol,2011,92(5):929-937.
    [8] SIEDLER S,LINDNER S N,BRINGER S,et al.Reductivewhole-cell biotransformation with Corynebacteriumglutamicum:improvement of NADPH generation from glucoseby a cyclized pentose phosphate pathway using pfkA and gapAdeletion mutants[J].Appl Microbiol Biotechnol,2013,97(1):143-152.
    [9] BAART G J,LANGENHOF M,VAN D W B,et al.Expression of phosphofructokinase in Neisseria meningitidis[J].Microbiology,2010,156(2):530-542.
    [10] YAMAMOTO S,GUNJI W,SUZUKI H,et al.Overexpression of genes encoding glycolytic enzymes inCorynebacterium glutamicum enhances glucose metabolism andalanine production under oxygen deprivation conditions[J].Appl Environ Microbiol,2012,78(12):4447-4457.
    [11] MARTNEZ-COSTA O H,SNCHEZ V,LZARO A,etal.Distinct functional roles of the two terminal halves ofeukaryotic phosphofructokinase[J].The Biochemicaljournal,2012,445(2):213-218.
    [12] WILLIAMSON T,ADIAMAH D,SCHWARTZ JM,et al.Exploring the genetic control of glycolytic oscillations inSaccharomyces Cerevisiae[J].BMC Systems Biology,2012,6(108):1-15.
    [13] TANNEBERGER K,KIRCHBERGER J,BR J,et al.Anovel form of 6-phosphofructokinase.Identification andfunctional relevance of a third type of subunit in Pichia pastoris[J].The Journal of biological chemistry,2007,282(32):23687-23697.
    [14] MACHIDA M,ASAI K,SANO M,et al.Genome sequencingand analysis of Aspergillus oryzae[J].Nature,2005,438(7071):1157-1161.
    [15] 王金良,陈宏文.米曲霉pyrG基因克隆及其同源转化系统的建立[J].食品科学,2010,31(11):202-205.
    [16] 刘薇,吴晶晶,陈宏文.米曲霉6-磷酸葡萄糖脱氢酶基因gsdA的克隆及生物信息学分析[J].亚热带植物科学,2012,41(3):11-15.
    [17] POORMAN R A,RANDOLPH A,KEMP R G,et al.Evolution of phosphofructokinase-gene duplication and creationof new effector sites[J].Nature,1984,309(5967):467-469.
    [18] BRüSER A,KIRCHBERGER J,SCH NEBERG T.Alteredallosteric regulation of muscle 6-phosphofructokinase causesTarui disease[J].Biochemical and biophysical researchcommunications,2012,427(1):133-137.
    [19] BANASZAK K,MECHIN I,OBMOLOVA G,et al.Thecrystal structures of eukaryotic phosphofructokinases frombaker's yeast and rabbit skeletal muscle[J].J Mol Biol,2011,407(2):284-297.
    [20] STR TER N,MAREK S,KUETTNER EB,et al.Moleculararchitecture and structural basis of allosteric regulation ofeukaryotic phosphofructokinases[J].FASEB journal:official publication of the Federation of American Societies forExperimental Biology,2011,25(1):89-98.
  • 加载中
计量
  • 文章访问数:  182
  • HTML全文浏览量:  56
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-17
  • 刊出日期:  2013-06-18

目录

    /

    返回文章
    返回