Progress on the Gene of Rice Clustered Spikelets(Cl)Mutant
-
摘要: 水稻是世界上最重要的粮食作物之一, 也是单子叶植物分子生物学研究的模式植物。稻穗 (即花序) 的生殖发育直接影响到稻谷的产量和稻米的品质, 因此研究水稻花器官的形成无论在发育生物学还是在遗传育种上都具有重要的理论意义和实际应用价值。本文介绍了当前花器官研究状况, 从簇生穗的性状, 形成机制及遗传学分析等方面的出发, 阐述了簇生穗基因的研究进展, 并展望基因在未来水稻遗传育种中的应用。Abstract: Rice (Oryza sativa L.) is one of the most important crops in the world, and also a model plant for molecular biology research in monocotyledon.Rice reproductive development directly affects yields and quality of rice.Therefore, researches on rice floral organ development showed great theoretical significance and practical application for both molecular developmental biology and rice genetics and breeding.In this review, the research progress of floral organ development was introduced.Meanwhile, the research status of Cl gene and the prospective of application of the gene were elucidated on the basis of traits of rice clustered spikelets, formation mechanism and genetic analysis.
-
Key words:
- clustered spikelets /
- genetic analysis /
- gene mapping /
- progress
-
[1] WAKANA TANAKA M P, DAVID JACKSON, HIRO-YUKI HIRANO.Grass Meristems II:Inflorescence Architecture, Flower Development and Meristem Fate[J].Plant Cell Physiol, 2013, 54 (3) :313-324. [2] LI J B, XIA M Y, WAN B L, et al.Genetic Analysis and Gene Mapping of a Twisted Hull Mutant in Rice[J].Chinese Journal of Rice Science, 2008, 6:17. [3] 王彬, 吴先军, 谢兆辉, 等.花器官发育的ABC模型研究进展[J].中国农学通报, 2003, 19 (5) :78-82. [4] 王玲霞, 李平.一个水稻多柱头突变体的形态特征和基因定位[J].作物学报, 2011, 37 (10) :1779-1784. [5] 刘坚, 郭龙彪, 钱前.水稻花器官发育基因的研究进展[J].中国稻米, 2007, (3) :8-9. [6] THEISSEN G, SAEDLER H.Floral quartets[J].Nature, 2001, 409 (6819) :469-471. [7] COEN E S, MEYEROWITZ E M.The war of the whorls:genetic interactions controlling flower development[J].Nature, 1991, 353 (6339) :31-37. [8] XU Z.Plant development and reproduction:advances and prospectives[J].Acta Botanica Sinica, 1999, 41 (9) :909-920. [9] PARKINSON C L, ADAMS K L, PALMER J D.Multigene analyses identify the three earliest lineages of extant flowering plants[J].Current Biology, 1999, 9 (24) :1485-1491. [10] FERRARIO S, IMMINK R G, SHCHENNIKOVA A, et al.The MADS box gene FBP2is required for SEPALLATA function in petunia[J].The Plant Cell Online, 2003, 15 (4) :914-925. [11] ANGENENT G C, FRANKEN J, BUSSCHER M, et al.A novel class of MADS box genes is involved in ovule development in petunia[J].The Plant Cell Online, 1995, 7 (10) :1569-1582. [12] COLOMBO L, FRANKEN J, KOETJE E, et al.The petunia MADS box gene FBP11determines ovule identity[J].The Plant Cell Online, 1995, 7 (11) :1859-1868. [13] ZAHN L M, KONG H, LEEBENS-MACK J H, et al.The Evolution of the SEPALLATA Subfamily of MADS-Box Genes A Preangiosperm Origin With Multiple Duplications Throughout Angiosperm History[J].Genetics, 2005, 169 (4) :2209-2223. [14] PELAZ S, DITTA G S, BAUMANN E, et al.B and C floral organ identity functions require SEPALLATA MADS-box genes[J].Nature, 2000, 405 (6783) :200-203. [15] THEIBEN G.Development of floral organ identity:stories from the MADS house[J].Current opinion in plant biology, 2001, 4 (1) :75-85. [16] DAPENG YUN WL, LUDOVICO DRENIC, CHANGSONG YINA, et al.OsMADS16 Genetically Interacts with OsMADS3and OsMADS58in Specifying Floral Patterning in Rice Mol[J].Plant, 2013, 6 (2) :743-756. [17] 张向前, 邹金松, 朱海涛, 等.水稻早熟多子房突变体fon5的遗传分析和基因定位[J].遗传, 2008, 30 (10) :1349-1355. [18] 华志明.水稻分子发育研究的若干进展[J].中国水稻科学, 2000, 14 (4) :256-260. [19] 罗琼, 朱立煌.水稻花发育的分子生物学研究进展[J].遗传, 2002, 24 (1) :87-93. [20] 李进波, 万丙良, 戚华雄.水稻花器官发育的遗传研究进展[J].湖北农业科学, 2010, 49 (010) :2563-2566. [21] 李爱宏, 武茹, 张亚芳, 等.一个水稻多重颖壳突变体的形态学观察及初步遗传分析[J].中国水稻科学, 2006, 20 (4) :348-354. [22] KHANDAY I, YADAV S R, VIJAYRAGHAVAN U.Rice LHS1/OsMADS1 controls floret meristem specification by coordinated regulation of transcription factors and hormone signaling pathways[J].Plant physiology, 2013:1970-1983. [23] KOBAYASHI K, MAEKAWA M, MIYAO A, et al.PANICLE PHYTOMER2 (PAP2) , encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice[J].Plant and cell physiology, 2010, 51 (1) :47-57. [24] GAO X, LIANG W, YIN C, et al.The SEPALLATA-like gene OsMADS34is required for rice inflorescence and spikelet development[J].Plant physiology, 2010, 153 (2) :728-740. [25] OHMORI S, KIMIZU M, SUGITA M, et al.MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice[J].The Plant Cell Online, 2009, 21 (10) :3008-3025. [26] LI H, LIANG W, JIA R, et al.The AGL6-like gene OsMADS6regulates floral organ and meristem identities in rice[J].Cell research, 2009, 20 (3) :299-313. [27] KOBAYASHI K, YASUNO N, SATO Y, et al.Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene[J].The Plant Cell Online, 2012, 24 (5) :1848-1859. [28] CUI R, HAN J, ZHAO S, et al.Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa) [J].The Plant Journal, 2010, 61 (5) :767-781. [29] BOMMERT P, SATOH-NAGASAWA N, JACKSON D, et al.Genetics and evolution of inflorescence and flower development in grasses[J].Plant and cell physiology, 2005, 46 (1) :69-78. [30] BORTIRI E, HAKE S.Flowering and determinacy in maize[J].Journal of experimental botany, 2007, 58 (5) :909-916. [31] DERBYSHIRE P, BYRNE M E.MORE SPIKELETS1Is Required for Spikelet Fate in the Inflorescence of Brachypodium[J].Plant physiology, 2013, 161 (3) :1291-1302. [32] WOODS D P, HOPE C L, MALCOMBER S T.Phylogenomic analyses of the BARREN STALK1/LAX PANICLE1 (BA1/LAX1) genes and evidence for their roles during axillary meristem development[J].Molecular Biology and Evolution, 2011, 28 (7) :2147-2159. [33] ASHIKARI M, SAKAKIBARA H, LIN S, et al.Cytokinin oxidase regulates rice grain production[J].Science, 2005, 309 (5735) :741-745. [34] HUANG X, QIAN Q, LIU Z, et al.Natural variation at the DEP1locus enhances grain yield in rice[J].Nature genetics, 2009, 41 (4) :494-497. [35] NAKAGAWA M, SHIMAMOTO K, KYOZUKA J.Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice[J].The Plant Journal, 2002, 29 (6) :743-750. [36] WELLMER F, RIECHMANN J L.Gene networks controlling the initiation of flower development[J].Trends in Genetics, 2010, 26 (12) :519-527. [37] IKEDA-KAWAKATSU K, YASUNO N, OIKAWA T, et al.Expression level of ABERRANT PANICLE ORGANIZATION1determines rice inflorescence form through control of cell proliferation in the meristem[J].Plant physiology, 2009, 150 (2) :736-747. [38] IKEDA-KAWAKATSU K, MAEKAWA M, IZAWA T, et al.ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1[J].The Plant Journal, 2012, 69 (1) :168-180. [39] KOMATSU M, CHUJO A, NAGATO Y, et al.FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets[J].Development, 2003, 130 (16) :3841-3850. [40] YOSHIDA A, SASAO M, YASUNO N, et al.TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition[J].Proceedings of the National Academy of Sciences, 2013, 110 (2) :767-772. [41] REN D, LI Y, ZHAO F, et al.MULTI-FLORET SPIKELET1, which encodes an AP2/ERF protein, determines spikelet meristem fate and sterile lemma identity in rice[J].Plant physiology, 2013, 162 (2) :872-884. [42] LEE D Y, AN G.Two AP2family genes, supernumerary bract (SNB) and Osindeterminate spikelet 1 (OsIDS1) , synergistically control inflorescence architecture and floral meristem establishment in rice[J].The Plant Journal, 2012, 69 (3) :445-461. [43] LEE D Y, LEE J, MOON S, et al.The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem[J].The Plant Journal, 2007, 49 (1) :64-78. [44] LI H, XUE D, GAO Z, et al.A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice[J].The Plant Journal, 2009, 57 (4) :593-605. [45] HONG L, QIAN Q, ZHU K, et al.ELE restrains empty glumes from developing into lemmas[J].Journal of Genetics and Genomics, 2010, 37 (2) :101-115. [46] YUN D, LIANG W, DRENI L, et al.OsMADS16interacts with OsMADS3and OsMADS58in specifying floral patterning in rice[J].Molecular Plant, 2013:743-756. [47] WANG K, TANG D, HONG L, et al.DEP and AFO regulate reproductive habit in rice[J].PLoS genetics, 2010, 6 (1) :e1000818. [48] YAMAGUCHI T, LEE DY, MIYAO A, et al.Functional diversification of the two C-class MADS box genes OSMADS3and OSMADS58in Oryza sativa[J].The Plant Cell Online, 2006, 18 (1) :15-28. [49] ZAHN L M, LEEBENS-MACK J H, ARRINGTON J M, et al.Conservation and divergence in the AGAMOUS subfamily of MADS-box genes:evidence of independent suband neofunctionalization events[J].Evolution&development, 2006, 8 (1) :30-45. [50] DRENI L, PILATONE A, YUN D, et al.Functional analysis of all AGAMOUS subfamily members in rice reveals their roles in reproductive organ identity determination and meristem determinacy[J].The Plant Cell Online, 2011, 23 (8) :2850-2863. [51] TANAKA W, TORIBA T, OHMORI Y, et al.The YABBY gene TONGARI-BOUSHI1 is involved in lateral organ development and maintenance of meristem organization in the rice spikelet[J].The Plant Cell Online, 2012, 24 (1) :80-95. [52] YAMAGUCHI T, NAGASAWA N, KAWASAKI S, et al.The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa[J].The Plant Cell Online, 2004, 16 (2) :500-509. [53] 孟浪.水稻簇生穗突变体cll (t) 的基因定位及候选基因筛选[D].福州:福建农林大学, 2011. [54] 曾秀红.水稻簇生穗基因cl-4的精细定位[D].扬州:扬州大学, 2009. [55] JODON N E.Inheritance of some of the more striking characters in rice[J].Journal of Heredity, 1957, 48 (4) :181-192. [56] 陈红旗, 刘刚, 朱旭东, 等.水稻簇生穗突变体的鉴定及遗传[J].南京农业大学学报, 2002, 25 (3) :116-118. [57] 张毅, 沈福成, 杨正林, 等.水稻籽粒簇生材料Z1820簇生性的遗传分析[J].农业生物技术科学, 2005, 21 (7) :64-72. [58] 田翠, 张涛, 蒋开锋, 等.水稻小穗簇生突变体的遗传分析及其基因的初步定位[J].分子植物育种, 2010, (1) :29-34. [59] 周鹏.水稻穗部簇生突变体 (Cl-z) 的遗传分析与初步定位[J].福建农业学报, 2012, 27 (5) :481-484. [60] 郑雷英, 朱旭东, 钱前, 等.水稻穗部突变体Cl的形态和定位分析[J].科学通报, 2003, 48 (3) :264-267. [61] NAGAO S, TAKAHASHI M.Trial Construction of Twelve Linkage Groups in Japanese Rice: (Genetical Studies on Rice Plant, ⅩⅩⅦ) [J].Journal of the Faculty of Agriculture, Hokkaido University, 1963, 53 (1) :72-130. [62] 肖巧珍.水稻簇生穗簇生基因的等位性鉴定和遗传分析[D].桂林:广西大学, 2007 [63] 张毅, 李云峰, 谢戎, 等.水稻小穗簇生性近等基因系的构建及其近等性评价[J].作物学报, 2006, 32 (3) :397-401. [64] 郑雷英.理化诱变水稻突变体库的构建及水稻簇生穗突变体-Cl的形态和定位分析[D].上海:中国科学院研究生院 (上海生命科学研究院) , 2002. [65] ZHENG L, ZHU X, QIAN Q, et al.Morphology and mapping analysis of rice (Oryza sativa L.) clustered spikelets (Cl) mutant[J].Chinese Science Bulletin, 2003, 48 (6) :559-562. [66] 田翠.复粒稻小穗簇生突变体基因的遗传分析和初步定位[D].重庆:重庆大学, 2010. [67] CIAFFI M, PAOLACCI A R, TANZARELLA O A, et al.Molecular aspects of flower development in grasses[J].Sexual plant reproduction, 2011, 24 (4) :247-282. [68] YOSHIDA H, NAGATO Y.Flower development in rice[J].Journal of experimental botany, 2011, 62 (14) :4719-4730. [69] 郭龙彪, 储成才, 钱前.水稻突变体与功能基因组学[J].植物学通报, 2006, 23 (1) :1-13. [70] 汪庆, 汪得凯, 陶跃之.一个新的水稻半矮化小穗突变体的遗传分析与基因定位[J].中国水稻科学, 2011, 25 (6) :677-680.
点击查看大图
计量
- 文章访问数: 225
- HTML全文浏览量: 57
- PDF下载量: 7
- 被引次数: 0