• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物咖啡碱合成酶的生物信息学分析

孔祥瑞 杨军 王让剑

孔祥瑞, 杨军, 王让剑. 植物咖啡碱合成酶的生物信息学分析[J]. 福建农业学报, 2014, 29(12): 1211-1218. doi: 10.19303/j.issn.1008-0384.2014.12.011
引用本文: 孔祥瑞, 杨军, 王让剑. 植物咖啡碱合成酶的生物信息学分析[J]. 福建农业学报, 2014, 29(12): 1211-1218. doi: 10.19303/j.issn.1008-0384.2014.12.011
KONG Xiang-rui, YANG Jun, WANG Rang-jian. A Bioinformatic Analysis on Caffeine Synthase in Plants[J]. Fujian Journal of Agricultural Sciences, 2014, 29(12): 1211-1218. doi: 10.19303/j.issn.1008-0384.2014.12.011
Citation: KONG Xiang-rui, YANG Jun, WANG Rang-jian. A Bioinformatic Analysis on Caffeine Synthase in Plants[J]. Fujian Journal of Agricultural Sciences, 2014, 29(12): 1211-1218. doi: 10.19303/j.issn.1008-0384.2014.12.011

植物咖啡碱合成酶的生物信息学分析

doi: 10.19303/j.issn.1008-0384.2014.12.011
基金项目: 

中国乌龙茶产业协同创新中心 (培育) 专项 (2013-51)

福建省现代农业 (茶叶) 产业技术体系建设项目 (2014-357)

详细信息
    作者简介:

    孔祥瑞 (1986-) , 男, 硕士, 助理研究员, 主要从事茶树分子植物育种研究 (E-mail:kongxiangrui_2008@163.com)

  • 中图分类号: Q946.5

A Bioinformatic Analysis on Caffeine Synthase in Plants

  • 摘要: 采用生物信息学分析方法对GenBank中来源于茶树、可可、山茶等植物咖啡碱合成酶的氨基酸序列进行比对分析, 就等电点、亚细胞定位、信号肽、跨膜螺旋、保守性功能结构域及基序、二级结构与三级结构等重要参数进行预测与分析。结果表明, 植物咖啡碱合成酶主要定位于胞质和胞核中, 含有磷酸化、酰基化和糖基化修饰位点, 基于基因序列与保守结构域可被分成3种类型, 其中I型与II型酶蛋白均属全α型水溶性酶蛋白, III型酶蛋白除二级结构富含无规卷曲构件, 还极有可能存在信号肽序列, 但3类酶蛋白均无跨膜螺旋, 三级结构预测显示, I型、II型酶蛋白极为相似, 由α螺旋和横向β-折叠片层组成, III型则α螺旋位于横向两端, 中间由纵向β-折叠片层连接。
  • [1] 周晨阳, 金基强, 姚明哲, 等.茶树等植物中嘌呤生物碱代谢研究进展[J].茶叶科学, 2011, 31 (2) :87-94.
    [2] ASHIHARA H, MONTEIRO A M, GILLIES F M, et al.Biosynthesis of caffeine in leaves of coffee[J].Plant Physiol, 1996, 111 (3) :747-753.
    [3] SCHULTHESS B H, MORATH P, BAUMANN T W.Caffeine biosynthesis starts with the metabolically channeled formation of 7-methyl-XMP-A new hypothesis[J].Phytochemistry, 1996, 41 (1) :169-175.
    [4] KATO M, KANEHARA T, SHIMIZU H, et al.Caffeine biosynthesis in young leaves of Camellia sinensis:in vitro studies on N-methyltransferase activity involved in the conversion of xanthosine to caffeine[J].Physiol Plantarum, 1996, 98 (3) :629-636.
    [5] NEGISHI O, OZAWA T, IMAGAWA H.Conversion of xanthosine into caffeine in tea plants[J].Agric Biol Chem, 1985, 49 (1) :251-253.
    [6] 谭礼强, 齐桂年, 陈盛相, 等.植物中的咖啡碱:从合成途径研究到转基因作物[J].园艺学报, 2012, 39 (9) :1849-1858.
    [7] MALUF M P, SILVA C C, OLIVEIRA M P A, et al.Altered expression of the caffeine synthase gene in a naturally caffeinefree mutant of Coffea Arabica[J].Genet Mol Biol, 2009, 32 (4) :802-810.
    [8] KATO M, KITAO N, ISHIDA M, et al.Expression for caffeine biosynthesis and related enzymes in Camellia sinensis[J].Z Naturforsch C, 2010, 65 (3-4) :245-256.
    [9] 冯艳飞, 梁月荣.茶树S-腺苷甲硫氨酸合成酶基因的克隆和序列分析[J].茶叶科学, 2001, 21 (1) :21-25.
    [10] YONEYAMA N, MORIMOTO H, YE C X, et al.Substrate specificity of N-methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme[J].Mol Genet Genomics, 2006, 275 (2) :125-135.
    [11] 孔祥瑞.茶树候选功能基因电子克隆的可行性分析[J].分子植物育种, 2014, 12 (2) :332-337.
    [12] KUMAR S, DUDLEY J, NEI M, et al.MEGA:a biologistcentric software for evolutionary analysis of DNA and protein sequences[J].Briefings in bioinformatics, 2008, 9 (4) :299-306.
    [13] HALL T A.BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[J].Nucl Acids Symp, 1999, 41:95-98.
    [14] TALAVERA G, CASTRESANA J.Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments[J].Systematic Biology, 2007, 56 (4) :564-577.
    [15] SIGRIST CJA, CERUTTI L, DE CASTRO E, et al.PROSITE, a protein domain database for functional characterization and annotation[J].Nucleic Acids Res, 2010, 38 (Database i) :161-166.
    [16] BENDTSEN J D, NIELSEN H, VON HEIJNE G, et al.Improved prediction of signal peptides:SignalP 3.0[J].J Mol Biol, 2004, 340 (4) :783-795.
    [17] BRIESEMEISTER S, BLUM T, BRADY S, et al.SherLoc2:a high-accuracy hybrid method for predicting subcellular localization of proteins[J]J.Proteome Res, 2009, 8 (11) :5363-5366.
    [18] GASTEIGER E, HOOGLAND C, GATTIKER A, et al.Protein identification and analysis tools on the ExPASy Server[M].In:John M, Walker. (Eds) The proteomics protocols handbook.Humana Press, 2005:571-607.
    [19] ANDERS K, BJORN L, GUNNAR VON H, et al.Predicting transmembrane protein topology with a hidden markov model:application to complete genomes[J].J Mol Biol, 2001, 305 (3) :567-580.
    [20] LUPAS A, VAN DYKE M, STOCK J.Predicting coiled coils from Protein sequences[J].Science, 1991, 252 (5009) :1162-1164.
    [21] CHENG J, RANDALL A, SWEREDOSKI M, et al.SCRATCH:a protein structure and structural feature prediction server[J].Nucleic Acids Res, 2005, 33 (Web Server) :72-76.
    [22] BIASINI M, BIENERT S, WATERHOUSE A, et al.SWISS-MODEL:modelling protein tertiary and quaternary structure using evolutionary information[J].Nucleic Acids Res, 2014, 42 (1) :252-258.
    [23] SCHWEDE T, KOPP J, GUEX N, et al.SWISS-MODEL:an automated protein homology-modeling server[J].Nucleic Acids Res, 2003, 31 (13) :3381-3385.
    [24] SWANEY D, PEDRO B, LEA S, et al.Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation[J].Nat Meth, 2013, 10 (7) :676-682.
    [25] YONEYAMA N, MORIMOTO H, YE C X, et al.Substrate specificity of N-methyl transferasc involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme[J].Mol Gen Genomics, 2006, 275 (2) :125-135.
  • 加载中
计量
  • 文章访问数:  169
  • HTML全文浏览量:  50
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-28
  • 刊出日期:  2014-12-18

目录

    /

    返回文章
    返回