A Bioinformatic Analysis on Caffeine Synthase in Plants
-
摘要: 采用生物信息学分析方法对GenBank中来源于茶树、可可、山茶等植物咖啡碱合成酶的氨基酸序列进行比对分析, 就等电点、亚细胞定位、信号肽、跨膜螺旋、保守性功能结构域及基序、二级结构与三级结构等重要参数进行预测与分析。结果表明, 植物咖啡碱合成酶主要定位于胞质和胞核中, 含有磷酸化、酰基化和糖基化修饰位点, 基于基因序列与保守结构域可被分成3种类型, 其中I型与II型酶蛋白均属全α型水溶性酶蛋白, III型酶蛋白除二级结构富含无规卷曲构件, 还极有可能存在信号肽序列, 但3类酶蛋白均无跨膜螺旋, 三级结构预测显示, I型、II型酶蛋白极为相似, 由α螺旋和横向β-折叠片层组成, III型则α螺旋位于横向两端, 中间由纵向β-折叠片层连接。Abstract: The amino acid sequences of caffeine synthase from Camellia sinensis, Theobroma cacao, Camellia japonica and other plants which were registered in GenBank, were analyzed and predicted by bioinformatic tools in subsequent aspects, including the isoelectric point, subcellular localization, signal peptide, transmembrane topologieal structure, conserved functional domain, motif, secondary structure and tertiary structure of protein.Resultsshowed that the caffeine synthase of plants which were located in cytoplasm and nuclei, and had phosphorylation, acylation, glycosylation sites could be divided into three different types based on gene sequences and conservative domains.Two of them, type I and type II protein, wereα-type soluble proteinases, and the secondary structure of type III proteinase was rich in random coil and has potential signal peptide, but they all did not have transmembrane helical structure.The result of tertiary structure prediction indicated that type I protein and type II protein were similar, they were all composed ofα-helix and horizontalβ-folded layers, but in the type III protein theα-helixes locateed in the lateral ends and were connected by verticalβ-folded layers.
-
Key words:
- tea (Camellia sinensis) /
- caffeine synthase /
- bioinformatics
-
[1] 周晨阳, 金基强, 姚明哲, 等.茶树等植物中嘌呤生物碱代谢研究进展[J].茶叶科学, 2011, 31 (2) :87-94. [2] ASHIHARA H, MONTEIRO A M, GILLIES F M, et al.Biosynthesis of caffeine in leaves of coffee[J].Plant Physiol, 1996, 111 (3) :747-753. [3] SCHULTHESS B H, MORATH P, BAUMANN T W.Caffeine biosynthesis starts with the metabolically channeled formation of 7-methyl-XMP-A new hypothesis[J].Phytochemistry, 1996, 41 (1) :169-175. [4] KATO M, KANEHARA T, SHIMIZU H, et al.Caffeine biosynthesis in young leaves of Camellia sinensis:in vitro studies on N-methyltransferase activity involved in the conversion of xanthosine to caffeine[J].Physiol Plantarum, 1996, 98 (3) :629-636. [5] NEGISHI O, OZAWA T, IMAGAWA H.Conversion of xanthosine into caffeine in tea plants[J].Agric Biol Chem, 1985, 49 (1) :251-253. [6] 谭礼强, 齐桂年, 陈盛相, 等.植物中的咖啡碱:从合成途径研究到转基因作物[J].园艺学报, 2012, 39 (9) :1849-1858. [7] MALUF M P, SILVA C C, OLIVEIRA M P A, et al.Altered expression of the caffeine synthase gene in a naturally caffeinefree mutant of Coffea Arabica[J].Genet Mol Biol, 2009, 32 (4) :802-810. [8] KATO M, KITAO N, ISHIDA M, et al.Expression for caffeine biosynthesis and related enzymes in Camellia sinensis[J].Z Naturforsch C, 2010, 65 (3-4) :245-256. [9] 冯艳飞, 梁月荣.茶树S-腺苷甲硫氨酸合成酶基因的克隆和序列分析[J].茶叶科学, 2001, 21 (1) :21-25. [10] YONEYAMA N, MORIMOTO H, YE C X, et al.Substrate specificity of N-methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme[J].Mol Genet Genomics, 2006, 275 (2) :125-135. [11] 孔祥瑞.茶树候选功能基因电子克隆的可行性分析[J].分子植物育种, 2014, 12 (2) :332-337. [12] KUMAR S, DUDLEY J, NEI M, et al.MEGA:a biologistcentric software for evolutionary analysis of DNA and protein sequences[J].Briefings in bioinformatics, 2008, 9 (4) :299-306. [13] HALL T A.BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[J].Nucl Acids Symp, 1999, 41:95-98. [14] TALAVERA G, CASTRESANA J.Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments[J].Systematic Biology, 2007, 56 (4) :564-577. [15] SIGRIST CJA, CERUTTI L, DE CASTRO E, et al.PROSITE, a protein domain database for functional characterization and annotation[J].Nucleic Acids Res, 2010, 38 (Database i) :161-166. [16] BENDTSEN J D, NIELSEN H, VON HEIJNE G, et al.Improved prediction of signal peptides:SignalP 3.0[J].J Mol Biol, 2004, 340 (4) :783-795. [17] BRIESEMEISTER S, BLUM T, BRADY S, et al.SherLoc2:a high-accuracy hybrid method for predicting subcellular localization of proteins[J]J.Proteome Res, 2009, 8 (11) :5363-5366. [18] GASTEIGER E, HOOGLAND C, GATTIKER A, et al.Protein identification and analysis tools on the ExPASy Server[M].In:John M, Walker. (Eds) The proteomics protocols handbook.Humana Press, 2005:571-607. [19] ANDERS K, BJORN L, GUNNAR VON H, et al.Predicting transmembrane protein topology with a hidden markov model:application to complete genomes[J].J Mol Biol, 2001, 305 (3) :567-580. [20] LUPAS A, VAN DYKE M, STOCK J.Predicting coiled coils from Protein sequences[J].Science, 1991, 252 (5009) :1162-1164. [21] CHENG J, RANDALL A, SWEREDOSKI M, et al.SCRATCH:a protein structure and structural feature prediction server[J].Nucleic Acids Res, 2005, 33 (Web Server) :72-76. [22] BIASINI M, BIENERT S, WATERHOUSE A, et al.SWISS-MODEL:modelling protein tertiary and quaternary structure using evolutionary information[J].Nucleic Acids Res, 2014, 42 (1) :252-258. [23] SCHWEDE T, KOPP J, GUEX N, et al.SWISS-MODEL:an automated protein homology-modeling server[J].Nucleic Acids Res, 2003, 31 (13) :3381-3385. [24] SWANEY D, PEDRO B, LEA S, et al.Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation[J].Nat Meth, 2013, 10 (7) :676-682. [25] YONEYAMA N, MORIMOTO H, YE C X, et al.Substrate specificity of N-methyl transferasc involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme[J].Mol Gen Genomics, 2006, 275 (2) :125-135.
点击查看大图
计量
- 文章访问数: 169
- HTML全文浏览量: 50
- PDF下载量: 1
- 被引次数: 0