Identification of Genes in JA/SA Signaling Pathways in Flammulina velutipes and Their Response to Exogenous JA/SA
-
摘要: 本研究鉴定了金针菇茉莉酸(JA)信号通路的4个关键基因:COI1、PDF1.2、MYC2-1、MYC2-2与水杨酸(SA)信号通路的4个关键基因:PR1-1、PR1-2、NPR1-1、NPR1-2。NBT染色法和荧光定量结果表明,金针菇JA/SA信号通路可应答外源JA/SA,50 μmol·L-1外源JA和500 μmol·L-1外源SA处理金针菇菌丝12 h可显著提高JA/SA信号通路基因的转录水平,基因PDF1.2响应JA诱导最明显,可作为JA信号通路标记基因;JA/SA信号转导途径间存在协同或拮抗作用:SA信号转导通路中NPR1蛋白对JA信号转导通路中PDF1.2基因表达有抑制作用,外源JA/SA的相对浓度决定其作用的强弱。Abstract: In this study, we identified 4 key genes of JA signaling pathway (COI1、PDF1.2、MYC2-1、MYC2-2) and SA signaling pathway (PR1-1、PR1-2、NPR1-1、NPR1-2) in Flammulina velutipes, respectively. The results of NBT staining and RT-qPCR demonstrated that JA/SA signaling pathways of F. velutipes responsed to exogenous JA/SA. In addition, the expression levels of these genes of JA/SA signaling pathway significantly increased under the treatment of exogenous 50 μmol · L-1 JA and 500 μmol · L-1 SA for 12 h, respectively. It was worth noting that PDF1.2 could be considered as the marker gene of JA signaling pathways for its response to exogenous JA obviously. The antagonistic effect between JA and SA signaling pathways may also exist in F.velutipes and the protein NPR1 of SA signaling pathways had inhibitory effect on the gene PDF1.2 expression level of JA signaling pathways which could be affected by the relative concentration of exogenous JA/SA.
-
Key words:
- Flammulina velutipes /
- jasmonic acid /
- salicylic acid /
- NBT /
- gene expression
-
图 2 A:不同浓度JA处理后基因相对表达量;B:不同浓度SA处理后基因相对表达量;C:不同时间JA处理后基因相对表达量;D:不同时间SA处理后基因相对表达量
Figure 2. A: Gene relative expression after different concentrations of JA treatment; B: Gene relative expression after different concentrations of SA treatment; C: Gene relative expression after different times of JA treatment; D: Gene relative expression after different times of SA treatment
表 1 金针菇JA/SA信号通路关键基因分析
Table 1. Main gene analysis of JA/SA signaling pathway in F. velutipes
信号途径 基因 名称 GenBank登录号 同源蛋白物种 同源蛋白GenBank登录号 结构域名称 E值 相似性/% 分值 荧光定量引物(5′-3′) JA gene 2615 COI1 KX129930 Rhodotorula toruloides EMS23488.1 AMN1 2.00E-134 44 438 F:CTATGGACGAACGAGAGACGAC R:GCCACCGTTTCTTTATGCC gene 6872 PDF1.2 KX129931 Arabidopsis thaliana AED95107.1 Knot1 4.00E-45 34 24 F: TGGAAGATACCCCGAGGACAC R:GGAAGAAGGCGAGCGAAGTC gene 6724 MYC2-1 KX129932 Laccaria bicolor XP_001879735.1 Helix-loop-helix domain 3.00E-38 43 147 F: TAACTCCTTCGCAAACCCTCG R:GCTCGTTTATGCCTTCGTTGA gene 2796 MYC2-2 KX129933 Laccaria bicolor XP_001879735.1 Helix-loop-helix domain 1.00E-77 50 252 F: ACAAGTGAGGCTCAGCAAGGTC R:GAAGACGAGTGATTTCGGCAGT SA gene1937 PR1-1 KX257996 Cylindrobasidium torrendii KIY69700.1 SCP_PRY1_like 1.00E-58 50 197 F: TGGAAAGGGACGACCGAAGT R:CGGACGGATGATTGTGGAGAA gene5143 PR1-2 KX129927 Moniliophthora perniciosa AEZ63361.1 SCP_PRY1_like 3.00E-57 54 200 F: GATACAACAGAGGTGGGATGCG R:TTGAAGTTTCCAGGTGGCAAGTAT gene4378 NPR1-1 KX129928 Saccharomyces cerevisiae CAA96076.1 NPR1_like_C 3.00E-81 56 272 F: GCGACAGTGTCACCACATTCC R:AACCAAAGAAGCGTCACATCC gene8890 NPR1-2 KX129929 Saccharomyces cerevisiae CAA96076.1 NPR1_like_C 4.00E-55 39 202 F: GGAGGAGTTGGTCGTCAGGC R:AAGGTCGGTTCGTCCCCAC -
[1] 彭金英, 黄永平, 植物防御反应的两种信号转导途径及其相互作用[J]. 植物生理与分子生物学学报, 2005, 31(4):347-353. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSI200504003.htm [2] CROSS B E, WEBSTER G R B. New metabolites of Gibberella fujikuroi. Part XV[J]. N-jasmonoyl-and N-dihydrojasmonoyl-isoleucine, Journal of the Chemical Society C:Organic, 1970, 13:1839-1842. [3] ALDRIDGE D C, GALT S, GILES D, et al. Metabolites of Lasiodiplodia theobromae[J].Journal of the Chemical Society C:Organic, 1971, 1623-1627. http://cn.bing.com/academic/profile?id=2163111748&encoded=0&v=paper_preview&mkt=zh-cn [4] MIERSCH O, SCHNEIDER G, SEMBDNER G, et al. Cyclopentane fatty acids from Gibberella fujikuroi[J].Phytochemistry, 1992, 31(11):3835-3837. doi: 10.1016/S0031-9422(00)97537-X [5] MIERSCH O, SCHNEIDER G, SEMBDNER G, et al. (+)-7-iso-Jasmonic acid and related compounds from Botryodiplodia theobromae[J], Phytochemistry, 1987, 26(4):1037-1039. doi: 10.1016/S0031-9422(00)82345-6 [6] MIERSCH O, SCHNEIDER G, SEMBDNER G. Jasmonic acid like substances from the cultural filtrate of Botryodiplodia theobromae[J],Phytochemistry, 1989, 28(5):1203-1305. http://cn.bing.com/academic/profile?id=2005329431&encoded=0&v=paper_preview&mkt=zh-cn [7] MIERSCH O, SCHNEIDER G, SEMBDNER G. Hydroxylated jasmonic acid and related compounds from Botryodiplodia theobromae[J]. Phytochemistry, 1991, 30(12), 4049-4051. doi: 10.1016/0031-9422(91)83464-V [8] 黄毅.食用菌栽培[M].北京:高等教育出版社,1998:178-193. [9] 刘芳. 金针菇基因组和转录组测序与初步研究[D]. 福州:福建农林大学, 2013:1-138. [10] 刘朋虎, 谢宝贵, 邓优锦等. 草菇gpi基因结构及其异核体表达协同增效作用[J]. 食用菌学报, 2012, 18(4):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-SYJB201104000.htm [11] 王文艳, 岳林许, 张演义等. 葡萄SA和JA信号转导重要基因克隆及其对外源信号应答分析[J]. 园艺学报, 2012, 39(5):817-827. http://www.cnki.com.cn/Article/CJFDTOTAL-YYXB201205002.htm [12] 吴光美, 严俊杰, 杨志云等. 与金针菇子实体发育有关的漆酶编码基因Fv-lac4的结构及表达差异分析[J]. 基因组学与应用生物学, 2015, 33(6):1254-1260. http://epub.cnki.net/kns/detail/detail.aspx?QueryID=7&CurRec=1&recid=&FileName=GXNB201406020&DbName=CJFDLAST2015&DbCode=CJFQ&pr= [13] 周莹, 寿森炎, 贾承国等. 水杨酸信号转导及其在植物抵御生物胁迫中的作用[J]. 自然科学进展, 2007, 17(3):305-311. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200703004.htm [14] BANUELOS G R, ARGUMEDO R, PATEL K, et al. The developmental transition to flowering in Arabidopsis is associated with an increase in leaf chloroplastic lipoxygenase activity[J]. Plant Science, 2008, 174(3):366-373. doi: 10.1016/j.plantsci.2007.12.009 [15] FRAHRY G, SCHOPFER P. Inhibition of O2- reducing activity of horseradish peroxidase by diphenyleneiodonium[J]. Phytochemistry, 1998, 48:223-227. doi: 10.1016/S0031-9422(98)00004-1 [16] FRAHRY G, SCHOPFER P. NADH-stimulated, cyanide-restistant superoxide production in maize coleoptiles analysed with a tetrazoliumbasedassay[J]. Planta,2001,212:175-183. doi: 10.1007/s004250000376 [17] SHI L, GONG L, ZHANG X, et al. The regulation of methyl jasmonate on hyphal branching and GA biosynthesis in Ganoderma lucidum partly via ROS generated by NADPH oxidase[J]. Fungal Genetics and Biology, 2015, 81:201-211. doi: 10.1016/j.fgb.2014.12.002 [18] BROWSE J. Jasmonate passes muster:a receptor and targets for the defense hormone[J]. Annual Review of Plant Biology, 2009, 60:183-20. doi: 10.1146/annurev.arplant.043008.092007 [19] KAZAN K, MANNERS J M. MYC2:the master in action[J]. Molecular Plant, 2013, 6(3):686-703. doi: 10.1093/mp/sss128 [20] CAO H, BOWLING S A, GORDON A S, DONG X N. Characterization of an Arabidopsis thalianasis mutant that is non-responsive to induce of systemic acquired resistance[J]. Plant Cell, 1994, 6:1583-1592. doi: 10.1105/tpc.6.11.1583 [21] NDAMUKONG I, ABDALLAT A A, THUROW C, et al. SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription[J]. The Plant Journal, 2007, 50(1):128-139. doi: 10.1111/j.1365-313X.2007.03039.x [22] DONG X. SA, JA, ethylene, and disease resistance in plants[J]. Current opinion in plant biology, 1998,1(4):316-323. doi: 10.1016/1369-5266(88)80053-0 [23] LORENZO O, SOLANO R. Molecular players regulating the jasmonate signalling network[J]. Current opinion in plant biology, 2005, 8(5):532-540. doi: 10.1016/j.pbi.2005.07.003 [24] 王兆生. 日本工厂化优质金针菇[J]. 食用菌, 1994, (5):28-29. http://www.cnki.com.cn/Article/CJFDTOTAL-SIYJ199405032.htm [25] 邢作山, 周传建, 郭惠等. 金针菇工厂化瓶栽技术[J]. 西北园艺, 2014, (9):38-41. http://www.cnki.com.cn/Article/CJFDTOTAL-XBYY201405024.htm [26] 黄毅. 食用菌工厂化栽培实践[M], 福州:福建科学技术出版社, 2014:193-203. [27] 尹永刚, 冯占, 余养朝. 金针菇工厂化瓶栽的设备?设施与技术要点[J]. 食药用菌, 2015, 23(1):48-49. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSYC201501029.htm