• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渗透预处理樱桃番茄的微波真空干燥特性及动力学模型

王琦 郑亚凤 高慧颖 黄贤贵 魏云华

王琦, 郑亚凤, 高慧颖, 黄贤贵, 魏云华. 渗透预处理樱桃番茄的微波真空干燥特性及动力学模型[J]. 福建农业学报, 2017, 32(10): 1118-1123. doi: 10.19303/j.issn.1008-0384.2017.010.014
引用本文: 王琦, 郑亚凤, 高慧颖, 黄贤贵, 魏云华. 渗透预处理樱桃番茄的微波真空干燥特性及动力学模型[J]. 福建农业学报, 2017, 32(10): 1118-1123. doi: 10.19303/j.issn.1008-0384.2017.010.014
WANG Qi, ZHENG Ya-feng, Gao Hui-ying, HUANG Xian-gui, WEI Yun-hua. Characteristics and Kinetics of Microwave-vacuum Dehydration of Osmotically Pretreated Cherry Tomatoes[J]. Fujian Journal of Agricultural Sciences, 2017, 32(10): 1118-1123. doi: 10.19303/j.issn.1008-0384.2017.010.014
Citation: WANG Qi, ZHENG Ya-feng, Gao Hui-ying, HUANG Xian-gui, WEI Yun-hua. Characteristics and Kinetics of Microwave-vacuum Dehydration of Osmotically Pretreated Cherry Tomatoes[J]. Fujian Journal of Agricultural Sciences, 2017, 32(10): 1118-1123. doi: 10.19303/j.issn.1008-0384.2017.010.014

渗透预处理樱桃番茄的微波真空干燥特性及动力学模型

doi: 10.19303/j.issn.1008-0384.2017.010.014
基金项目: 

福建省科技计划项目——省属公益类科研院所基本科研专项 2017R1014-1

福建省农业科学院科技创新团队建设项目 STIT2017-1-10

福建省农业科学院青年人才创新基金 2015QC-10

详细信息
    作者简介:

    王琦(1981-), 男, 副研究员, 博士研究生, 研究方向:食品加工资源研究与利用(E-mail:nkywq@163.com)

    通讯作者:

    黄贤贵(1965-), 男, 研究员, 研究方向:园艺植物栽培与加工利用(E-mail:hxg323@163.com)

  • 中图分类号: TS255.36

Characteristics and Kinetics of Microwave-vacuum Dehydration of Osmotically Pretreated Cherry Tomatoes

  • 摘要: 旨在研究经过渗透预处理的樱桃番茄在微波真空干燥过程中的水分变化规律。对渗透预处理樱桃番茄进行微波真空干燥,绘制不同微波功率、真空度、装载量条件下的干燥曲线和降水速率变化曲线,对试验数据进行拟合,建立干燥动力学模型。结果表明,樱桃番茄微波真空干燥过程符合Page方程,该模型可较准确地预测樱桃番茄在微波真空干燥过程中的水分变化规律,为樱桃番茄的微波真空干燥过程的优化和控制提供了理论依据。
  • 图  1  不同微波功率下樱桃番茄的干燥曲线(A)和降水速率随含水率变化(B)

    Figure  1.  Drying curves (A) and correlation between dehydration rate and moisture content (B) of cherry tomatoesprocessed at different microwave power

    图  2  不同真空度下樱桃番茄的干燥曲线(A)和降水速率随含水率变化(B)

    Figure  2.  Drying curves (A) and correlation between dehydration rate and moisture content (B) of cherry tomatoeswith varied degrees ofvacuum

    图  3  不同装载量下樱桃番茄的干燥曲线(A)和降水速率随含水率变化(B)

    Figure  3.  Drying curves (A) and correlation betweendehydration rate and moisture content (B) cherry tomatoeswith different loading capacities

    图  4  不同微波功率下lnMR随干燥时间(A)和lnt与ln[-ln(MR)](B)的关系

    Figure  4.  Correlationsbetween t and lnMR (A) and between lnt and ln[-ln(MR)] (B) at different microwave power

    图  5  不同真空度下lnMR随干燥时间(A)和lnt与ln[-ln(MR)](B)的关系曲线

    Figure  5.  Correlationsbetweent and lnMR (A) and between lnt and ln[-ln(MR)] (B) at different vacuum levels

    图  6  不同装载量下lnMR随干燥时间(A)和lnt与ln[-ln(MR)](B)的关系

    Figure  6.  Correlationsbetweent and lnMR (A) and between lnt and ln[-ln(MR)] (B) at different loading capacities

    图  7  相同条件下试验值与预测值的比较

    Figure  7.  Comparison between experimental and predicted data under same conditions

    表  1  樱桃番茄微波真空干燥动力学模型

    Table  1.   Kinetic model of microwave-vacuum drying cherry tomatoes

    模型形式 待定系数 R2 F P
    MR=e-rtN a=0.998 0.948 472.723 <0.001
    b=0.01
    c=0.005
    d=-0.0023
    e=-2.774
    f=0.0013
    g=0.0004
    h=-0.0019
    下载: 导出CSV
  • [1] RAFFO A, LEONARDI C, FOGLIANO V, et al. Nutritional value of cherry tomatoes (Lycopersicon esculentum Cv. Naomi F1) harvested at different ripening stages[J]. Journal of Agricultural & Food Chemistry, 2002, 50(22):6550-6556. doi: 10.1021/jf020315t?src=recsys
    [2] AGARWAL S, RAO A V. Tomato lycopene and its role in human health and chronic diseases[J]. Canadian Medical Association Journal, 2000, 163(6):739-744. http://en.journals.sid.ir/Reference.aspx?ID=136039
    [3] FAGUNDES C, PALOU L, MONTEIRO A R, et al. Effect of antifungal hydroxypropyl methylcellulose-beeswax edible coatings on gray mold development and quality attributes of cold-stored cherry tomato fruit[J]. Postharvest Biology & Technology, 2014, 92(2):1-8. doi: 10.1007/978-3-319-23371-0_11/fulltext.html
    [4] MOSES J A, NORTON T, ALAGUSUNDARAM K, et al. Novel Drying Techniques for the Food Industry[J]. Food Engineering Reviews, 2014, 6(3):1-13. doi: 10.1007/s12393-014-9078-7
    [5] LIN T M, DURANCE T D, SCAMAN C H. Characterization of vacuum microwave, air and freeze dried carrot slices[J]. Food Research International, 1998, 31(2):111-117. doi: 10.1016/S0963-9969(98)00070-2
    [6] BARREIRO J A, MILANO M, SANDOVAL A J. Kinetics of colour change of double concentrated tomato paste during thermal treatment[J]. Journal of Food Engineering, 1997, 33(34):359-371.
    [7] 张慜, 徐艳阳, 孙金才.国内外果蔬联合干燥技术的研究进展[J].食品与生物技术学报, 2003, 22(6):103-106. http://edu.wanfangdata.com.cn/Periodical/Detail/wxqgdxxb200306025
    [8] 穆金屏, 周家春, 蒋丽华, 等.苹果片红外热风联合干燥特性研究[J].食品工业科技, 2016, 37(7):. http://d.wanfangdata.com.cn/Periodical/spgykj201607024
    [9] 黄艳, 黄建立, 郑宝东.农产品微波真空干燥技术的现状及发展趋势[J].福建轻纺, 2009, (2):42-45. http://d.g.wanfangdata.com.cn/Periodical_nyjxxb200512046.aspx
    [10] DAK M, JAIN M K, JAT S L. Optimization of microwave-vacuum drying of pomegranate arils[J]. Journal of Food Measurement & Characterization, 2014, 8(4):398-411. doi: 10.1007/s11694-014-9205-4
    [11] YOUSIF A N, SCAMAN C H, DURANCE T D, et al.Flavor volatiles and physical characteristics of vacuum-microwave and air-dried sweet basil (Ocimnm basilicum, L.)[J].Agricultural and Food Chemistry, 1999, (47):4777-4781. https://es.scribd.com/document/251481887/tmpAD35-tmp
    [12] MICHALSKA A, WOJDYŁO A, LECH K, et al. Physicochemical properties of whole fruit plum powders obtained using different drying technologies[J]. Food Chemistry, 2016, 207:223-232. doi: 10.1016/j.foodchem.2016.03.075
    [13] ZIELINSKA M, MICHALSKA A. Microwave-assisted drying of blueberry (Vaccinium corymbosum, L.) fruits:Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture[J]. Food Chemistry, 2016, 212:671-680. doi: 10.1016/j.foodchem.2016.06.003
    [14] OLIVEIRA S M, BRANDÃO T R S, SILVAC L M. Influence of Drying Processes and Pretreatments on Nutritional and Bioactive Characteristics of Dried Vegetables:A Review[J]. Food Engineering Reviews, 2015:1-30. doi: 10.1007/s12393-015-9124-0.pdf
    [15] 范君. 圣女果渗透脱水及渗后热风干燥特性研究[D]. 福州: 福建农林大学, 2013: 20-21. http://cdmd.cnki.com.cn/Article/CDMD-10389-1013327068.htm
    [16] 董全, 陈宗道.国内外果蔬渗透脱水的研究进展[J].广州食品工业科技, 2004, 20(2):129-132. http://www.wenkuxiazai.com/doc/b8afd8d4c1c708a1284a44c9-2.html
    [17] 吴树铮. 卷心菜微波真空干燥特性及干燥工艺的研究[D]. 福州: 福建农林大学, 2012: 14-16. http://cdmd.cnki.com.cn/Article/CDMD-10389-1012425602.htm
    [18] 梁静. 莲子微波干燥特性及干燥工艺的研究[D]. 福州: 福建农林大学, 2007: 14-16. http://cdmd.cnki.com.cn/Article/CDMD-10389-2007135843.htm
    [19] 李顺峰, 王安建, 侯传伟, 等.废弃双孢蘑菇菇柄微波真空干燥特性及动力学模型[J].中国食品学报, 2016, 16(2):181-188. http://www.cnki.com.cn/Article/CJFDTotal-ZGSP201501031.htm
    [20] AHMED J, RAGHAVAN G S V, ARORA S, et al. Drying kinetics of Agaricus bisporus and Pleurotus florida mushroom.[J]. Transactions of the Asae American Society of Agricultural Engineers, 2003, 46(3):721-724. doi: 10.1007/s00231-016-1931-1
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1651
  • HTML全文浏览量:  183
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-15
  • 修回日期:  2017-06-18
  • 刊出日期:  2017-10-28

目录

    /

    返回文章
    返回