Effects of Processing and Temperature on Imidacloprid Residues in Chrysanthemum morifolium
-
摘要: 研究分析杭白菊加工过程中吡虫啉的残留变化,以及温度对样品加工过程中吡虫啉残留的影响。对不同生产原料的吡虫啉残留分析,发现推荐剂量吡虫啉制剂喷药2次,收获间隔期为21 d的杭白菊胎菊和朵菊符合安全生产要求。杭白菊加工过程包括蒸青、烘干、晾干等3个工序,胎菊鲜样和朵菊鲜样中吡虫啉的残留量在蒸青过程分别损失6.36%、8.71%,在烘干过程分别损失3.99%、4.48%,在晾干过程分别损失13.18%、29.60%,吡虫啉主要损失于加工过程中的晾干步骤。杭白菊干样的吡虫啉残留含量要显著高于鲜样,加工对吡虫啉有浓缩作用。加工时不同温度下吡虫啉在样品中的减少率不同,相同时间下,烘干的农药减少率大于晾干,温度升高有利于吡虫啉的降解。Abstract: Effects of processing and temperature on the residual content of imidacloprid in Chrysanthemum morifolium were investigated. As indicated by the level of the pesticide residues in commercial C. morifolium products on the market, the common field spraying practice on the plants seemed acceptable for meeting the food safety requirement. For this study, at various processing stages the imidacloprid concentrations in the dried chrysanthemum buds and flowers were reduced by 6.36% and 8.71%, respectively, during blanching; 3.99% and 4.48%, respectively, during thermal dehydration; and, 13.18% and 29.60%, respectively, during ambient temperature drying. It showed that imidacloprid was largely dissipated from the products by drying under ambient conditions. Evaporation apparently raised the relative imidacloprid concentration in the finished products. Under high temperatures, the rate of imidacloprid reduction in a thermal dehydration was greater than that of an ambient drying suggesting the possibility of pesticide degradation by heat.
-
Key words:
- processing /
- imidacloprid /
- pesticide residue /
- Chrysanthemum morifolium
-
表 1 吡虫啉在杭白菊鲜样和干样中的残留
Table 1. Imidacloprid residues in fresh and dried C. morifolium
施药量
/(kg·hm-2)施药次数 收获间隔期
/d残留量/(mg·kg-1) 胎菊鲜样 胎菊干样 朵菊鲜样 朵菊干样 0.09 2 14 0.222±0.004 a 0.892±0.001 a 0.182±0.004 a 0.764±0.002 a 21 0.080±0.002 b 0.316±0.002 b 0.078±0.004 b 0.244±0.003 b 28 0.018±0.001 c 0.078±0.006 c 0.017±0.001 c 0.063±0.001 c 3 14 0.273±0.004 a 1.199±0.004 a 0.194±0.007 a 0.769±0.005 a 21 0.086±0.005 b 0.320±0.001 b 0.084±0.008 b 0.310±0.001 b 28 0.033±0.001 c 0.106±0.003 c 0.023±0.002 c 0.068±0.006 c 0.135 2 14 0.321±0.007 a 1.105±0.003 a 0.219±0.001 a 0.861±0.009 a 21 0.116±0.004 b 0.327±0.001 b 0.092±0.005 b 0.322±0.004 b 28 0.043±0.003 c 0.155±0.001 c 0.027±0.002 c 0.082±0.001 c 3 14 0.327±0.002 a 1.344±0.002 a 0.212±0.003 a 0.916±0.002 a 21 0.124±0.001 b 0.404±0.001 b 0.101±0.001 b 0.394±0.001 b 28 0.046±0.001 c 0.156±0.002 c 0.028±0.006 c 0.100±0.001 c 注:同列数据后不同小写字母表示同一施药量同一施药次数不同收获间隔期处理间差异显著(P<0.05;n=3;M±SE)。 表 2 加工过程对杭白菊中吡虫啉残留量的影响
Table 2. Effect of processing on imidacloprid residues in C. morifolium
加工过程 胎菊 朵菊 残留量
/μg样品质量
/g残留含量
/(mg·kg-1)残留量
/μg样品质量
/g残留含量
/(mg·kg-1)鲜样 0.802±0.011a 10.000 a 0.080±0.002 a 0.781±0.024 a 10.000 a 0.078±0.004 a 蒸青 0.751±0.042 b 11.221±0.023 b 0.067±0.014 b 0.713±0.035 b 11.780±0.034 b 0.061±0.015 b 烘干 0.721±0.022 c 4.953±0.021 c 0.145±0.015 c 0.681±0.030 c 4.022±0.016 c 0.169±0.024 c 晾干 0.626±0.064 d 1.981±0.051 d 0.316±0.002 d 0.479±0.062 d 1.965±0.028 d 0.244±0.003 d 注:用SPSS重复测量方差分析分析加工过程的数据时,球形检验>0.05,没有相关性,同列数据后小写字母不同表示同一样品不同加工过程处理间差异显著(P<0.05;n=3;M±SE)。 表 3 不同温度下杭白菊干样中吡虫啉的消解动态
Table 3. Degradation of imidacloprid in C. morifolium dried at varied temperatures
样品 温度
/℃消解动态方程 决定系数
R2半衰期
/d干胎菊 10 y=3.7492e-0.0333x 0.9020 20.81 a 20 y=3.7030e-0.0492x 0.9556 14.09 b 30 y=3.7567e-0.0650x 0.9784 10.66 c 干朵菊 10 y=3.6672e-0.0247x 0.9871 28.05 a 20 y=3.7417e-0.0402x 0.9711 17.23 b 30 y=3.5402e-0.0637x 0.9788 10.87 c 注:同列数据后小写字母不同表示不同温度处理间差异显著(P<0.05) 表 4 烘干和晾干对杭白菊中吡虫啉残留量的影响
Table 4. Effect of drying processes on imidacloprid residues in C. morifolium
加工过程 吡虫啉残留量减少率/% 胎菊 朵菊 烘干 4.21±0.13 5.13±0.08 晾干 1.34±0.21* 2.82±0.16* 注:同列中不同加工处理相比,*表示差异显著(P<0.05;n=3;M±SE)。 -
[1] 赵静, 崔旭, 吴加伦, 等.多菌灵在杭白菊及其土壤中的残留消解动态[J].农药学学报, 2013.15(4):457-463. http://www.oalib.com/paper/4445377 [2] 王振荣.农药商品大全[M].北京:中国商业出版社, 1996:345-346. [3] 吴声敢, 吴俐勤, 徐浩, 等.10%吡虫啉在水稻中的残留动态研究[J].农药, 2005, 44(1):25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ny200501010 [4] 杨红, 章维华, 黄丽琴, 等.吡虫啉在烟草中的残留动态研究[J].南京农业大学学报, 1999, 22(3):80-82. http://www.wenkuxiazai.com/doc/9ce001ffc8d376eeaeaa31dd.html [5] 毛江胜, 张红.孟静静, 等.吡虫啉在水稻中的残留动态研究[J].现代农药, 2006, 5(2):27-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdny200602009 [6] 黄玉南, 张绍铃, 方金豹, 等.吡虫啉在梨果实中的残留动态分析[J].果树学报, 2010, 27(3):453-456. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201603009.htm [7] 张艳, 王晓菁, 牛艳, 等.吡虫啉在枸杞中的残留动态[J].西北农业学报, 2012, 21(1):184-186. http://www.cqvip.com/qk/95650X/200802/26602243.html [8] 王明明, 龚艳, 陈浩, 等.吡虫啉在番茄中的残留动态及残留去除方法[J].食品科学, 2010, 31(19):133-136. http://d.wanfangdata.com.cn/Periodical_spkx201019027.aspx [9] 盛静, 屠婕红, 陈伟光, 等.吡虫啉在杭白菊中残留的动态研究[J].中草药, 2007, 38(9):1408-1410. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201517019.htm [10] Evaluations of pesticide residues[S]. Joint Meeting on Pesticide Residues, 2002. [11] HOLLAND P T, HAMILTON D, OHLIN B, et al. Effects of storage and processing on pesticide residues in plant products[J]. Pure and Applied Chemistry, 1994, 66(2):335-356. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.490.426 [12] GONZÁLEZ-RODRÍGUEZ R M, RIAL-OTERO R, CANCHO-GRANDE B, et al. A review on the fate of pesticides during the processes within the food-production Chain[J]. Critical Reviews in Food Science and Nutrition, 2011, 51(2):99-114. doi: 10.1080/10408390903432625 [13] KAUSHIK G, SATYA S, NAIK S N. Food processing a tool to pesticide residue dissipation-A review[J]. Food Research International, 2009, 42(1):26-40. doi: 10.1016/j.foodres.2008.09.009 [14] 李云成, 孟凡冰, 陈卫军, 等.加工过程对食品中农药残留的影响[J].食品科学, 2012, 33(5):315. https://www.wenkuxiazai.com/doc/d1d1f6b565ce0508763213af.html [15] STOYTCHEVA M. Pesticides:formulation, effects, fate[M]. Greece:In Tech, 2011:575-594. [16] 王明明, 龚艳, 陈浩, 等.吡虫啉在番茄中的残留动态及残留去除方法[J].食品科学, 2010, 31(19):133-136. http://d.wanfangdata.com.cn/Periodical_spkx201019027.aspx [17] FLEURAT-LESSARD F, CHAURAND M, MARCHEGAY G, et al. Effects of processing on the distribution of pirimiphos-methyl residues in milling fractions of durum wheat[J]. Journal of Stored Products Research, 2007, 43(4):384-395. doi: 10.1016/j.jspr.2006.12.002 [18] 李云成, 张耀海, 陈卫军, 等.橙汁加工过程对农药炔螨特残留的影响[J].农业工程学报, 2012, 28(9):270. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_nygcxb201209044 [19] LENTZA-RIZOS C, AVRAMIDES E J, KOKKINAKI K. Residues of azoxystrobin from grapes to raisins[J]. Journal of Agricultural and Food Chemistry, 2006, 54(1):138-141. doi: 10.1021/jf051821w [20] ROSE G, LANE S, JORDAN R. The fate of fungicide and insecticide residues in Australian wine grape by-products following field application[J]. Food Chemistry, 2009, 117(4):634-640. doi: 10.1016/j.foodchem.2009.04.061 [21] OECD. Magnitude of the pesticide residues in processed commodities[R]. OECD guideline for the testing of chemicals, 2008. [22] 刘光学, 乔雄梧, 陶传江, 等. NY/T 788-2004农药残留试验准则[S]. 北京: 中国农业出版社, 2004. [23] 魏厚道. 毒死蜱等农药在浙麦冬、杭白菊及其土壤中的残留动态研究[D]. 杭州: 浙江大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10335-2010069723.htm [24] GB 2763-2014食品中农药最大残留限量[S]. 北京: 中国标准出版社, 2014. [25] 王平, 孟志远, 陈小军, 等.不同清洗和加工方式对苹果中残留吡虫啉的去除效果[J].食品科学, 2016, 37(2):58-62. doi: 10.7506/spkx1002-6630-201602010 [26] 许高政. 苹果及其制品中农药残留加工系数的研究[D]. 泰安: 山东农业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10434-1014156557.htm [27] 李云成. 柑橘及其制品中农药残留加工因子的研究[D]. 重庆: 西南大学, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2086862 [28] 林金科, 李秀峰, 涂良剑, 等.乌龙茶农药残留在加工过程中的降解[J].中国农学通报, 2007, 23(12):113-117. doi: 10.3969/j.issn.1000-6850.2007.12.027