Tablet-forming Process for Utilization of Substandard Okra
-
摘要: 为了提高黄秋葵资源的利用效率,以其等外果粉末为主要原料,采用直接压片法制备黄秋葵营养片。在单因素试验基础上,以羧甲基淀粉钠、微晶纤维素、压力为响应因素,崩解时间和脆碎度为响应值,依据Box-Behnken中心组合原理,采用响应面法设计、并优化黄秋葵等外果粉末直接压片最佳工艺条件。结果表明:黄秋葵等外果粉末添加量76.6%、羧甲基淀粉钠添加量12.6%、微晶纤维素添加量10.8%、压力17.6 MPa时,黄秋葵等外果营养片脆碎度为0.308%,崩解时间为1 180 s,片型完整、表面光滑,并具有较好的适口性,为黄秋葵等外果功能食品的生产提供了科学依据。Abstract: To maximize the utilization of okra resources, a process was developed to make nutritional tablets from substandard material that would be otherwise of low market value or discarded as waste. The formulation and process for the tablet formation were optimized by using the response surface methodology. Disintegration time and friability of the tablets were the criteria for the evaluation under three process parameters including additions of sodium carboxymethyl starch and microcrystalline cellulose in the formulation as well as pressure applied to compress and form the tablets. The optimized conditions were (a) a mixture of 76.6% okra powder, 12.6% of sodium carboxymethyl starch, and 10.8% of microcrystalline cellulose, and (b) 17.6 MPa pressure for the compression. The tablets obtained had a friability of 0.308% and a disintegration time of 1 180 s, with a perfect shape, smooth surface and high palatability. It appeared that the experimental results could be use for scale up to manufacture a functional food product from the substandard okras.
-
Key words:
- okra /
- tablet-forming /
- tablet friability /
- tablet disintegration
-
表 1 响应面法的试验因素水平编码
Table 1. Codes on factors and levels for RSM
因素 代码 编码及水平 -1 0 1 羧甲基淀粉钠/% A 10 12 14 微晶纤维素/% B 8 10 12 压力/MPa C 16 18 20 表 2 响应面分析法试验设计及结果
Table 2. Experimental design and results of RSM
序号 A B C 脆碎度
/%崩解时间
/s1 -1 -1 0 0.633 1780 2 1 -1 0 0.527 1716 3 -1 1 0 0.502 1681 4 1 1 0 0.345 1209 5 -1 0 -1 0.631 1679 6 1 0 -1 0.521 1551 7 -1 0 1 0.516 1643 8 1 0 1 0.351 1290 9 0 -1 -1 0.647 1756 10 0 1 -1 0.521 1562 11 0 -1 1 0.533 1740 12 0 1 1 0.363 1299 13 0 0 0 0.308 1201 14 0 0 0 0.305 1205 15 0 0 0 0.306 1207 表 3 黄秋葵等外果营养片脆碎度的回归分析
Table 3. Regression analysis on friability of okra tablets
变异
来源平方和 自由度 均方和 F值 P值 模型 0.220 9 0.025 1534.840 <0.0001 A 0.036 1 0.036 2263.640 <0.0001 B 0.046 1 0.046 2900.530 <0.0001 C 0.039 1 0.039 2426.350 <0.0001 AB 6.502×10-4 1 6.502×10-4 40.680 0.0014 AC 7.562×10-4 1 7.562×10-4 47.310 0.0010 BC 4.840×10-4 1 4.840×10-4 30.280 0.0027 A2 0.031 1 0.031 1958.810 <0.0001 B2 0.039 1 0.039 2466.670 <0.0001 C2 0.042 1 0.042 2611.980 <0.0001 残差 7.992×10-5 5 1.598×10-5 失拟检验 7.525×10-5 3 2.508×10-5 10.750 0.086 纯误差 4.667×10-6 2 2.333×10-6 表 4 黄秋葵等外果营养片脆碎度回归模型的可信度分析
Table 4. Reliability of regression model on friability of okra tablets
项目 复相关系数
R2/%校正后
R2Adj/%标准误差
的平方根变异系数
CV/%平均值
/%分析
结果99.96 99.90 3.998×10-3 0.86 0.47 表 5 黄秋葵等外果营养片崩解时间的回归分析
Table 5. Regression analysis on disintegration time of okra tablets
变异
来源平方和 自由度 均方和 F值 P值 模型 7.708×105 9 85642.060 789.450 <0.0001 A 1.293×105 1 1.293×105 1191.760 <0.0001 B 1.925×105 1 1.925×105 1774.560 <0.0001 C 41472.000 1 41472.000 382.290 <0.0001 AB 41616.000 1 41616.000 383.620 <0.0001 AC 12656.250 1 12656.250 116.670 0.0001 BC 15252.250 1 15252.250 140.600 <0.0001 A2 1.090×105 1 1.090×105 1004.960 <0.0001 B2 1.792×105 1 1.792×105 1652.320 <0.0001 C2 1.000×105 1 1.000×105 921.950 <0.0001 残差 542.420 5 108.480 失拟检验 523.750 3 174.580 18.710 0.051 纯误差 18.670 2 9.330 表 6 黄秋葵等外果营养片崩解时间回归模型的可信度分析
Table 6. Reliability of regression model on disintegration time of okra tablets
项目 复相关系数
R2/%校正后
R2Adj/%标准误差
的平方根变异系数
CV/%平均值
/%分析
结果99.93 99.80 10.42 0.69 1501.27 表 7 黄秋葵等外果营养片最优配方
Table 7. Standardized and optimized levels of microcrystalline cellulose, pressure and sodium carboxymethyl starch
因素 A B C 规范变量 0.289 0.404 -0.223 实际变量 12.58% 10.81% 17.55MPa -
[1] KUMAR D, PRASAD S, MURTHY G S. Optimization of microwave-assisted hot air drying conditions of okra using response surface methodology[J].Journal of Food Science and Technology, 2014, 51(2):221-232. doi: 10.1007/s13197-011-0487-9 [2] HUANG J, ZHANG M. Effect of three drying methods on the drying characteristics and quality of okra[J]. Drying Technology, 2016, 34(8), 900-911. doi: 10.1080/07373937.2015.1086367 [3] TEMENOUGA V, CHARITIDIS T, AVGIDOU M, et al. Novel emulsifiers as products from internal Maillard reactions in okra hydrocolloid mucilage[J]. Food Hydrocolloids, 2016, 52(1):972-981. https://www.sciencedirect.com/science/article/pii/S0268005X15300710 [4] 李加兴, 陈选, 邓佳琴, 等.黄秋葵黄酮的提取工艺和体外抗氧化活性研究[J].食品科学, 2014, 35(10):121-125. doi: 10.7506/spkx1002-6630-201410022 [5] KAHLON T S, CHAPMAN M H, SMITH G E. In vitro binding of bile acids by okra, beets, asparagus, eggplant, turnips, green beans, carrots, and cauliflower[J]. Food chemistry, 2007, 103(2):676-680. doi: 10.1016/j.foodchem.2006.07.056 [6] 何慕怡, 沈文杰, 李育军, 等.黄秋葵营养加工特性及其冻干食品研发[J].长江蔬菜, 2014, (22):1-7. doi: 10.3865/j.issn.1001-3547.2014.22.001 [7] CRONIN K, RING D, SHEEHAN L A. Foulon, Probabilistic analysis of weight variability in tablets capsules arising from the filling of a cavity with powder of a poly-dispersed size[J]. Powder Technol, 2015, 270:287-295. doi: 10.1016/j.powtec.2014.10.013 [8] ADIBA B D, SALEM B, NABIL S, et al. Preliminary characterization of food tablets from date (Phoenix dactylifera L.) and Spirulina(Spirulina sp.) powders[J]. Powder Technol, 2011, 208(3):725-730. doi: 10.1016/j.powtec.2011.01.016 [9] 岳鹏飞, 郑琴, 胡鹏翼, 等.浅析粉末直接压片技术及其在中药应用中的关键问题[J].中草药, 2010, 41(12):2099. https://www.wenkuxiazai.com/doc/874e521552ea551810a6876e-3.html [10] 李金枝, 冯金瑞, 何恬, 等.粉末直接压片技术及其辅料的应用与研究现状[J].中国新药杂志, 2015, 24(21):2467-2498. http://www.cnki.com.cn/Article/CJFDTotal-ZXYZ201521012.htm [11] 高春生.粉末直接压片工艺:制药工业整体发展的助推剂[J].国际药学研究杂志, 2009, 36(1):1-5. http://www.docin.com/p-1543626351.html [12] 张强宗.粉末直接压片对辅料的应用要求探讨[J].海峡药学, 2015, 27(9):20-21. http://www.cqvip.com/QK/90929X/201509/666237657.html [13] 高强, 黄雪梅.中药片剂中常见问题的解决[J].今日药学, 2008, 18(4):93-94. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_guangdyx200804040 [14] 国家药典委员会.中华人民共和国药典:四部[M].北京:中国医药科技出版社, 2015:118-119. [15] 国家药典委员会.中华人民共和国药典:四部[M].北京:中国医药科技出版社, 2015:120. [16] AMEER K, BAE S W, JO Y, et al. Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modeling[J]. Food Chemistry, 2017, 229(8):198-207. http://umpir.ump.edu.my/view/year/2012.default.html [17] 刘理南, 张文胜, 任卫东, 等.羧甲基淀粉钠在片剂中的应用[J].山东医药工业, 2000, 19(1):41-42. http://www.wenkuxiazai.com/doc/ef93b5c44028915f804dc2aa-2.html [18] GOHEL M C, GANI P D. Review of co-processed directly compressible excipients[J]. Journal of Pharmaceutical Sciences, 2005, 8(1):76-93. http://www.academia.edu/21592477/A_review_of_co-processed_directly_compressible_excipients [19] 刘春平, 全向阳, 王超.粉末直接压片法概述及其应用思考[J].北方药学, 2012, 9(9):27-28. http://www.docin.com/p-1292197468.html [20] 张艳荣, 李敏, 吴丽娟, 等.玉米膳食纤维直接压片工艺研究[J].食品科学, 2011, 32(24):141-146. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=spkx201124031&dbname=CJFD&dbcode=CJFQ [21] 孙强, 何应.当归超微粉直接压片工艺研究[J].中国药房, 2008, 19(3):183-185. http://www.doc88.com/p-999317502781.html [22] 吴文刚, 刘友权, 易大森, 等.压裂液连续混配技术及在"工厂化"压裂中的应用[J].石油与天然气化工, 2016, 45(3):57-60. http://www.doc88.com/p-8901319956852.html [23] 阮克萍, 冯怡, 刘国平, 等.川参方直接压片工艺量化控制研究[J].中草药, 2014, 45(9):1262-1264. doi: 10.7501/j.issn.0253-2670.2014.09.012 [24] 刘想, 刘振春, 邹基豪, 等.薏苡仁多糖咀嚼片直接压片法辅料配比的工艺研究[J].农产品加工, 2017, (1):41-44. http://www.doc88.com/p-9972134231394.html [25] 黄苇, 刘源. 采用全粉末直接压片生产的话梅果粉压片糖果及制备方法: CN201210593914. 4[P]. 2013-4-24. http://d.wanfangdata.com.cn/Patent/CN201210593914.4/ [26] 林钧柱, 张汝华, 王洪光, 等.压力对全粉末直接压片片剂性质的影响[J].医药工业, 1986, 17(4):169-172. https://www.wenkuxiazai.com/doc/cd9dfc5cb9d528ea80c779ab.html