Effects of Continuous Application of a Soil Conditioner on Eggplant Cultivation and Soil Property
-
摘要: 通过连续施用土壤调理剂硅钙钾镁肥对茄子品质和土壤性状的影响研究,了解土壤调理剂硅钙钾镁肥的合理用量,为科学施用提供理论依据。结果表明,施用硅钙钾镁肥能提高茄子产量,提高茄子Vc含量。随硅钙钾镁肥用量的增加,茄子本身的Ca、Mg含量总体上变化趋势并不明显。随着硅钙钾镁肥用量的增加,土壤pH、有效磷、速效钾、交换性钙和交换性镁含量不断增高,用量在1 500 kg·hm-2显著高于对照处理;而硅钙钾镁肥的施用对土壤有机质和碱解氮含量影响无显著性差异。考虑到成本因素,土壤调理剂硅钙钾镁肥以750~1 125 kg·hm-2的用量对茄子的增产效果和品质最好。Abstract: Soil conditioners are frequently applied to remedy acidified soils. The silicon-calcium-potassium-magnesium (Si-Ca-K-Mg) fertilizer is a new product in the category. Effects of continuous application of the fertilizer on the quality of the eggplants grown on the soil as well as the properties of the soil were studied. The results showed that the application increased the yield and Vc content of the vegetable, but no significant effect on Ca or Mg with the increased amounts of the fertilization. On the other hand, the application of increasing Si-Ca-K-Mg fertilizer increased the pH, available P, available K, exchangeable Ca and exchangeable Mg in the soil, and peaked when fertilizer 1 500 kg·hm-2 was used. Meanwhile, the organic matters and alkali soluble N did not differ from those in control. Taking both yield and quality of eggplants as well as cost of fertilization into consideration, an Si-Ca-K-Mg fertilizer application rate ranging from 750 kg·hm-2 to 1 125 kg·hm-2 was recommended.
-
Key words:
- soil conditioner /
- eggplant /
- Vc /
- soil properties /
- silicon-calcium-potassium-magnesium fertilizer
-
表 1 连续施用硅钙钾镁肥对土壤养分含量的影响
Table 1. Effect of continuous application of Si-Ca-K-Mg fertilizer on nutrients in soil
处理 pH 有机质/
(g·kg-1)碱解氮/
(mg·kg-1)有效磷/
(mg·kg-1)速效钾/
(mg·kg-1)交换性钙/
(cmol·kg-1)交换性镁/
(cmol·kg-1)CK 5.15±0.05b 26.6±1.3a 162.3±20.8a 201.1±14.2c 831.3±103.5bc 10.2±0.9c 3.47±0.06b CK+T50 5.25±0.07b 25.9±2.5a 141.6±11.7a 205.2±13.7bc 779.3±69.6c 11.2±0.3bc 4.07±0.56ab 硫基+T50 5.25±0.06b 25.3±2.1a 137.7±11.0a 205.9±23.3bc 808.0±54.8c 11.7±1.1b 4.00±0.10ab 硝基+T50 5.26±0.13b 25.6±2.7a 142.2±17.8a 210.8±27.0bc 944.7±131.0abc 10.4±0.9bc 3.73±0.46b CK+T75 5.82±0.10a 25.2±1.4a 140.1±15.5a 203.7±18.9bc 843.3±59.6bc 11.5±0.6bc 4.08±0.12ab CK+T100 5.81±0.18a 27.9±0.5a 143.0±14.1a 237.1±7.5ab 1052±49.1ab 13.1±0.6a 4.60±0.52a CK+T125 5.95±0.08a 27.6±0.9a 140.1±5.6a 246.9±6.0a 1123.3±242.0a 13.4±0.3a 4.61±0.18a 注:同列中不同字母表示处理间差异显著(P < 0.05)。 -
[1] FONG S S, SENG L, CHONG W N, et al. Characterization of the coal derived humic acids from Mukah, Sarawak as soil conditioner[J]. Journal of the Brazilian Chemical Society, 2006, 17(3):582-587. doi: 10.1590/S0103-50532006000300023 [2] XU M, LIANG M, CHEN J, et al. Preliminary research on soil conditioner mediated citrus Huanglongbing mitigation in the field in Guangdong, China[J]. European Journal of Plant Pathology, 2013, 137(2):283-293. doi: 10.1007/s10658-013-0238-z [3] GUERRERO C, MORAL R, GOMEZ I, et al. Microbial biomass and activity of an agricultural aoil amended with the solid phase of pig slurries[J]. Bioresource Technology, 2007, 98:3259-3264. doi: 10.1016/j.biortech.2006.07.015 [4] ERIKSEN J. Gross sulphur mineralisation-immobilization turnover in soil amended with plant residues[J]. Soil Biology and Biochemistry, 2005, 37(12):2216-2224. doi: 10.1016/j.soilbio.2005.04.003 [5] FAGERIA N K, BALIGAR V C. Ameliorating soil acidity of tropical oxisols by liming for sustainable crop production(abstract)[J]. Advances in Agronomy, 2008, 99(8):345-399. [6] PICCOLO A, PIETRAMELLARA G, MBAGWU J S C. Use of humic substances as soil conditioners to increase aggregate stability[J]. Geoderma, 1997, 75(3-4):267-277. doi: 10.1016/S0016-7061(96)00092-4 [7] 赵其国.土壤退化及其防治[J].土壤, 1991, 23(2):57-61. http://www.cnki.com.cn/Article/CJFDTOTAL-JLSL510.004.htm [8] BRANDSMA R T, FULLEN M A, HOCKING T J. Soil conditioner effects on soil structure and erosion[J]. Journal of Soil & Water Conservation, 1999, 54(2):485-489. http://www.jswconline.org/content/54/2/485.short [9] GRZYB Z S, PIOTROWSKI W, BIELICKI P, et al. Effect of organic fertilizers and soil conditioners on the quality of maiden apple trees[J]. Acta Horticulturae, 2013, 1001:311-322. http://www.actahort.org/members/showpdf?booknrarnr=1001_35 [10] KONSTANTINOS C, MARIA R, EVANGELIA V, et al. Biofunctional characteristics of lignite fly ash modified by humates:a new soil conditioner[J]. Bioinorganic Chemistry & Applications, 2010, (1):182-186. http://www.oalib.com/paper/32400 [11] 张宾宾, 郭建斌, 蒋坤云, 等.新型土壤改良剂Arkadolith对沙质土壤主要物理性质的影响[J].水土保持研究, 2011, 18(5):59-62. http://www.cnki.com.cn/Article/CJFDTOTAL-STBY201105013.htm [12] 龚海军, 刘昭兵, 纪雄辉, 等.新型土壤改良剂对水稻吸收累积Cd、Pb的影响初探[J].湖南农业科学, 2010, (5):50-53. http://www.cnki.com.cn/Article/CJFDTOTAL-HNNK201005018.htm [13] KAY-SHOEMAKE J L, WATWOOD M E, SOJKA R E, et al. Polyacrylamide as a substrate for microbial amidase in culture and soil[J]. Soil Biology and Biochemistry, 1998, 30(13):1647-1654. doi: 10.1016/S0038-0717(97)00251-4 [14] STEINBERGER Y, SARIG S, NADLER, et al. The effect of synthetic soil conditioners on microbial biomass[J]. Arid Soil Research and Rehabilitation, 1993, 7(3):303-306. doi: 10.1080/15324989309381360 [15] 赵记军, 徐培智, 解开治, 等.土壤改良剂研究现状及其在南方旱坡地的应用前景[J].广东农业科学, 2007, (10):38-41. doi: 10.3969/j.issn.1004-874X.2007.10.014 [16] 谢修鸿, 梁运江, 李玉.黑木耳菌糠改良苏打盐碱土效果研究[J].水土保持学报, 2008, 22(5):130-133, 152. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200805028.htm [17] ASGHARI S, ABBASI F, NEYSHABOURI M R. Effects of soil conditioners on physical quality and bromide transport properties in a sandy loam soil[J]. Biosystems Engineering, 2011, 109(1):90-97. doi: 10.1016/j.biosystemseng.2011.02.005 [18] 郝秀珍, 周东美.天然蒙脱石和沸石改良对黑麦铜尾矿砂上生长的影响[J].土壤学报, 2005, 42(3):434-439. doi: 10.11766/trxb200406140313 [19] RAUTARAY S K, GHOSH B C, MITTRA B N. Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice-mustard cropping sequence under acid lateritic soils[J]. Bioresource Technology, 2003, 90:275-283. doi: 10.1016/S0960-8524(03)00132-9 [20] SCHUTTER M E, FUHRMANN J J. Soil microbial community responses to fly ash amendment as revealed by analyses of whole soils and bacterial isolates[J]. Soil Biology & Biochemistry, 2001, 33:1947-1958. http://webdoc.agsci.colostate.edu/soilcrop/cv/cv_stromberger_15.pdf [21] ERIKSEN J. Gross sulphur mineralisation-immobilization turnover in soil amended with plant residues[J]. Soil Biology and Biochemistry, 2005, 37(12):2216-2224. doi: 10.1016/j.soilbio.2005.04.003 [22] 刘广富."金正大"新产品——硅钙镁磷钾肥[J].科技向导, 2013, (29):150. http://www.cnki.com.cn/Article/CJFDTOTAL-KJZF201329133.htm [23] 李敏, 叶舒娅, 刘枫, 等.硅钙镁磷钾肥用量对油菜产量及磷钾吸收利用的影响[J].中国农学通报, 2015, 31(30):114-118. doi: 10.11924/j.issn.1000-6850.casb15040067 [24] 李敏, 叶舒娅, 刘枫, 等.硅钙镁磷钾肥不同用量对超级稻产量及磷钾吸收利用的影响[J].中国农学通报, 2014, 30(30):122-126. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201430023.htm [25] 侯文通, 代明, 陈日远, 等.硅钙磷钾肥对花生产量品质及经济效益的影响[J].山东农业科学, 2014, 46(2):89-91. http://www.cnki.com.cn/Article/CJFDTOTAL-AGRI201402022.htm [26] 张青, 栗方亮, 王煌平, 等.不同品种及用量的硅钙镁磷钾肥对番茄产量、品质及土壤pH值的影响[J].磷肥与复肥, 2015, 30(12):46-49. doi: 10.3969/j.issn.1007-6220.2015.12.016 [27] 解开治, 徐培智, 严超, 等.不同土壤改良剂对南方酸性土壤的改良效果研究[J].中国农学通报, 2009, 25(20):160-165. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB200920038.htm [28] 鲁如坤.土壤农业化学常规分析方法[M].北京:科学出版社, 2002. [29] 刘承军. 不同改良剂对酸性土壤理化性状和柱花草生长的影响[D]. 南宁: 广西大学, 2007. [30] 张海鹏, 刘强, 彭建伟, 等.钙镁磷型复混肥对湖南晚稻产量及磷肥效率的影响[J].中国土壤与肥料, 2012, (6):53-56. http://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201206010.htm [31] MA J F, RYAN P R, Delhaize E. Aluminum tolerance in plants and the complexing role of organic acids[J]. Trends in Plant Science, 2001, 6:273-278. doi: 10.1016/S1360-1385(01)01961-6 [32] 樊小林, 李进.碱性肥料调节香蕉园土壤酸度及防控香蕉枯萎病的效果[J].植物营养与肥料学报, 2014, 20(4):938-946. doi: 10.11674/zwyf.2014.0416 [33] 黎庆芬, 程健超.不同土壤调理剂对酸性土壤的改良效果[J].安徽农业科学, 2016, 44(15):140-142. doi: 10.3969/j.issn.0517-6611.2016.15.049 [34] 魏岚, 杨少海, 邹献中, 等.不同土壤调理剂对酸性土壤的改良效果[J].湖南农业大学学报:自然科学版, 2010, 36(1):77-81. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201615052.htm