Compositions and Antioxidant Activities of Oolong Tea Extracts Made by Two Processing Methods
-
摘要: 以清香乌龙茶为原料,采用先65%醇洗+后水提和先水提+后65%醇沉等2种提取方式制得粗茶叶多糖(TPs-水提和TPs-醇沉)及相应的附属产物(TPs-A、TPs-B和TPs-C),分析比较其组成含量、还原力及DPPH清除活性变化。结果表明,先65%醇洗+后水提制得的粗茶多糖中多糖含量最高,可溶性蛋白含量最低。其他组分来看,乙醚浸提茶叶有助于茶多酚/儿茶素类、总黄酮类、咖啡碱等小分子物质的浸出,水提醇沉则对茶叶内含成分的分离富集效果较差。抗氧化活性试验表明,2种提取方式制备的粗茶多糖TPs-水提和TPs-醇沉的还原力及DPPH清除活性显著弱于附属产物TPs-A、TPs-B和TPs-C。相关性分析表明,粗茶多糖的抗氧化活性表达与茶多酚中的儿茶素类,尤其是酯型儿茶素呈显著正相关,而与茶多糖、总黄酮和咖啡碱则呈正相关。结果表明,茶多糖具有抗氧化作用,其活性弱于茶叶中的多酚类。Abstract: An aromatic oolong tea was used as the raw material to extract polysaccharides (TPs) and other constituents (TPs-A, TPs-B and TPs-C) using two processing methods. The chemical compositions, reducing power, and DPPH scavenging capacities of the extracts were determined. The results showed that the method applying 65% ethanol for pre-soaking followed by a water extraction (E-W) produced more TPs and less soluble protein than the process employing a water extraction before precipitation by 65% ethanol (W-E). E-W promoted the extractions of polyphenols, catechins, flavonoids and caffeine; while, W-E was less efficient in separating or concentrating the components. On the antioxidant activity, TPs obtained by both methods were significantly lower on the reducing power and DPPH scavenging capacity than those of TPs-A, TPs-B and TPs-C. The correlation analysis suggested that the antioxidant activity of TPs was significantly related to the contents of polyphenols, catechins, and particularly ester catechins in the extract.There was also a synergism among TPs, total flavonoid and caffeine. It appeared that as antioxidants, TPs exhibited significantly lower activity than the phenolic compounds in the tea.
-
Key words:
- tea polysaccharides /
- extraction /
- components /
- antioxidant activity
-
表 1 茶多糖及分离物的组分含量
Table 1. Components of TPs and other constituents
组分
/(μg·mL-1)先醇洗+后水提 先水提+后醇沉 TPs-水提 TPs-A TPs-醇沉 TPs-B TPs-C 茶多糖 329.55±1.92a 200.32±1.61b 252.95±4.18b 267.27±3.21b 275.45±4.50b 可溶性蛋白 65.58±1.43c 184.10±6.24a 154.17±1.79b 190.81±1.70a 202.00±1.61a 茶多酚 281.50±9.19b 546.15±1.36a 241.83±12.92b 554.81±4.08a 612.02±3.40a 总黄酮 38.82±0.71b 63.33±0.52a 34.65±0.35b 49.78±1.04b 50.51±0.52b 儿茶素总量 184.31±1.21c 383.32±5.74a 52.33±1.63d 280.43±3.76b 288.66±5.10b 表没食子儿茶素(ECG) 52.70±1.60c 118.40±9.72a 20.71±2.03d 78.26±1.25b 81.07±2.00b 儿茶素(C) 8.29±0.76c 2.90±0.42d 2.98±0.22d 10.04±0.37b 12.17±0.24a 表没食子儿茶素没食子酸酯(EGCG) 89.51±1.78c 199.96±3.59a 17.01±1.01d 141.18±2.28b 144.26±3.14b 表儿茶素(EC) 8.63±0.20c 17.42±0.19a 3.16±0.17d 13.82±0.94b 14.09±0.44b 表儿茶素没食子酸酯(ECG) 25.19±0.38c 44.64±0.65a 8.48±0.80d 37.13±0.50b 37.07±0.26b 咖啡碱 15.72±1.62d 89.25±1.82b 72.24±1.60c 98.20±2.92b 108.97±2.68a 注:儿茶素总量为EGC、C、EGCG、EC、ECG之和。 表 2 抗氧化成分与DPPH清除活性及还原力变化的相关分析
Table 2. Effects of antioxidants on DPPH scavenging capacity and reducing power
项目 Pearson相关性 茶多糖 茶多酚 儿茶素类 EGC C EGCG EC ECG 咖啡因 总黄酮 DPPH清除率 0.599 0.991* 0.856* 0.813 0.520 0.857* 0.890* 0.878* 0.751 0.821 还原力 0.625 0.893* 0.900* 0.852 0.569 0.893* 0.914* 0.926* 0.447 0.858* 注:*表示显著相关。 -
[1] CAO H. Polysaccharides from Chinese tea:recent advance on bioactivity and function[J]. International Journal of Biological Macromolecules, 2013, 62:76-79. doi: 10.1016/j.ijbiomac.2013.08.033 [2] 杨军国, 陈泉宾, 王秀萍, 等.茶多糖组成结构及其降血糖作用研究进展[J].福建农业学报, 2014, 29(12):1260-1264. doi: 10.3969/j.issn.1008-0384.2014.12.021 [3] CHEN G J, YUAN Q X, SAEEDUDDIN M, et al. Recent advances in tea polysacchzrides:Extraction, purification, physicochemical characterization and bioactivities[J]. Carbohydrate Polymers, 2016, 153:663-678. doi: 10.1016/j.carbpol.2016.08.022 [4] 王忠雷, 杨丽燕, 曾详伟, 等.新技术在中药多糖提取工艺中的单独及协同应用[J].世界科学技术:中医药现代化, 2013, 15(6):1441-1446. http://www.cnki.com.cn/Article/CJFDTOTAL-SJKX201306037.htm [5] 任小盈, 李静, 马存强, 等.茶多糖的提取与分离纯化技术研究新进展[J].安徽农业科学, 2014, 42(23):7993-7995, 7999. doi: 10.3969/j.issn.0517-6611.2014.23.105 [6] 石奇.植物多糖的新型提取分离技术应用进展[J].西安文理学院学报:自然科学版, 2015, 18(3):50-54. http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGZY20170927003&dbname=CAPJ2015 [7] 王淑萍, 李晓静, 张桂珍.黄芪多糖提取分离纯化工艺的优化研究[J].分子科学学报(中、英文), 2008, 24(1):60-64. http://www.cnki.com.cn/Article/CJFDTOTAL-FZKB200801014.htm [8] 李卷梅, 聂少平, 李景恩, 等.香薷多糖的乙醇分级纯化及其性质[J].食品科学, 2010, 31(9):182-185. http://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201019040.htm [9] 陆广富, 陈晓兰, 黄亚奇, 等.桑叶粗多糖最佳提取工艺研究[J].中国畜牧兽医, 2016, 43(7):1922-1927. http://www.cnki.com.cn/Article/CJFDTOTAL-GWXK201607040.htm [10] 杨军国, 王丽丽, 陈键, 等.乙醇在茶叶多糖提取中的应用研究[J].茶叶学报, 2016, 57(4):192-196. http://www.cnki.com.cn/Article/CJFDTOTAL-CYKJ201604008.htm [11] 杨军国, 陈键, 王丽丽, 等.乙醇法沉淀茶多糖的抗氧化活性评价[J].福建农业学报, 2016, 31(2):199-204. http://www.fjnyxb.cn/CN/abstract/abstract2877.shtml [12] 王丽丽, 陈键, 宋振硕, 等.茶叶中没食子酸、儿茶素类和生物碱的HPLC检测方法研究[J].福建农业学报, 2014, 29(10):987-994. doi: 10.3969/j.issn.1008-0384.2014.10.011 [13] BERKER K I, GVLVK, TOR I, et al. Total antioxidant capacity assay using optimized ferricyanide/Prussian blue method[J]. Food Analytical Methods, 2010, 3(3):154-168. doi: 10.1007/s12161-009-9117-9 [14] 韦献雅, 殷丽琴, 钟成, 等. DPPH法评价抗氧化活性研究进展[J].食品科学, 2014, 35(9):317-322. doi: 10.7506/spkx1002-6630-201409062 [15] 李卷梅, 聂少平, 李景恩, 等.香薷多糖的乙醇分级纯化及其性质[J].食品科学, 2010, 31(19):182-185. http://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201019040.htm [16] 张宁, 武永福.黄花菜粗多糖梯度乙醇提取工艺及其抗氧化活性研究[J].中国食物与营养, 2014, 20(11):60-62. doi: 10.3969/j.issn.1006-9577.2014.11.015 [17] 邹胜, 徐溢, 张庆.天然植物多糖分离纯化技术研究现状和进展[J].天然产物研究与开发, 2015, 27(8):1501-1509. http://www.cnki.com.cn/Article/CJFDTOTAL-TRCW201508032.htm [18] 李红法, 郭松波, 满淑丽, 等.乙醇分级沉淀提取黄芪多糖及其理化性质和抗氧化活性研究[J].中国中药杂志, 2015, 40(11):2112-2116. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201511009.htm [19] 萧力争, 胡祥文, 蔡金娥, 等.绿茶乙醇浸提技术研究[J].天然产物研究与开发, 2006, 18(4):634-636. http://www.cnki.com.cn/Article/CJFDTOTAL-TRCW200604025.htm [20] 杨军国, 陈键, 王丽丽, 等.醇沉分级粗茶多糖的抗氧化活性比较及变化机制[J].食品工业科技, 2016, 37(17):96-100, 105. http://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201617018.htm [21] CHEN H X, WANG Z S, QU Z S, et al. Physicochemical characterization and antioxidant activity of a polysaccharide isolated from oolong tea[J]. European Food Research and Technology, 2009, 229(4):629-635. doi: 10.1007/s00217-009-1088-y [22] 于淑池, 侯金鑫.龙井茶多糖对自由基和NO2--清除作用研究[J].食品研究与开发, 2012, 33(4):28-31. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=spyk201204011&dbname=CJFD&dbcode=CJFQ [23] 何念武, 李丹.商洛绿茶多糖的分离纯化及体外抗氧化和抗肿瘤活性研究[J].食品发酵与工业, 2015, 41(8):79-83. http://www.cnki.com.cn/Article/CJFDTOTAL-SPFX201508015.htm [24] WANG Y L, ZHAO Y, MAROBELA K A, et al. Tea polysaccharides as food antioxidants:an old women's tale?[J]. Food Chemistry, 2013, 138(2-3):1923-1927. doi: 10.1016/j.foodchem.2012.09.145 [25] 王黎明, 夏文水.茶多糖降血糖机制的体外研究[J].食品与生物技术学报, 2010, (3):354-358. http://www.cnki.com.cn/Article/CJFDTOTAL-WXQG201003009.htm [26] 李娟, 活泼, 杨海燕.茶叶功效成分研究进展[J].浙江科技学院学报, 2005, 17(4):285-289. http://youxian.cnki.com.cn/yxdetail.aspx?filename=ASSF20170713001&dbname=CAPJ2015 [27] 申雯, 黄建安, 李勤, 等.茶叶主要活性成分的保健功能与作用机制研究进展[J].茶叶通讯, 2016, 43(1):8-13. http://www.cnki.com.cn/Article/CJFDTOTAL-CYTX201601004.htm