Optimization of Flavonoids Extraction from Leaves of Helianthus tuberosus L. by Response Surface Methodology and Determination of Antimicrobial Activity of Resulting Extract
-
摘要: 探索组培菊芋叶中总黄酮超声辅助提取最佳工艺条件,并对其抑菌活性进行评价。在单因素试验基础上,以总黄酮提取率为指标,应用响应面法优化其超声提取条件;并考察其总黄酮的抗菌活性。结果表明,响应面优化组培菊芋叶总黄酮提取的最佳工艺参数为:液料比1:40,提取时间20 min,乙醇含量(体积分数)40%,提取温度64℃,测得总黄酮提取率为1.47 mg·g-1。组培菊芋叶总黄酮对大肠杆菌的抑制效果良好,但对金黄色葡萄球菌和枯草芽孢杆菌的抑制效果不明显。结论:利用响应面法分析得到了组培菊芋叶总黄酮超声提取的最佳工艺条件,提取的总黄酮对大肠杆菌具有良好的抑菌活性,可为进一步研究开发组培菊芋奠定实验基础。Abstract: The ultrasound-assisted extraction of flavonoids from leaves of Helianthus tuberosus L. was optimized. The extract obtained was evaluated for its antimicrobial activity.Based on the results from single-factor tests, the extraction conditions were further optimized using the response surface methodology. It was found that when 40% ethanol was applied as the solvent in a substrate:solvent ratio of 1:40 to extract the leaves for 20 min at 64℃, the yield and efficiency of the process could be maximized to reach a flavonoid extraction rate of 1.47 mg·g-1. The flavonoids obtained showed an excellent antibacterial activity on Escherichiacoli, but not on Staphylococcus aureus or Bacillus subtilis.
-
表 1 响应面分析的因素及水平
Table 1. Factors and levels of response surface analysis
水平 A液料比/
(mL·g-1)B提取时间
/minC提取液含量
/%D提取温度
/℃-1 20 20 40 50 0 30 30 50 60 1 40 40 60 70 表 2 响应面试验结果
Table 2. Experimental results of response surface analysis
试验号 A
液料比/
(mL·g-1)B
提取时间
/ minC
提取液含量
/%D
提取温度
/℃R
总黄酮提
取率/%1 30 40 40 60 1.31 2 30 30 40 50 1.29 3 30 30 50 60 1.43 4 40 40 50 60 1.43 5 40 30 50 70 1.41 6 20 30 50 70 1.36 7 20 40 50 60 1.37 8 40 30 50 50 1.37 9 30 30 40 70 1.32 10 30 40 50 50 1.37 11 20 30 50 50 1.31 12 30 20 60 60 1.30 13 20 20 50 60 1.37 14 40 30 60 60 1.43 15 30 30 50 60 1.44 16 30 20 50 70 1.39 17 30 30 50 60 1.44 18 20 30 60 60 1.39 19 30 30 60 50 1.30 20 30 20 50 50 1.30 21 30 30 50 60 1.43 22 30 40 60 60 1.38 23 30 30 50 60 1.42 24 20 30 40 60 1.37 25 30 40 50 70 1.29 26 30 20 40 60 1.44 27 40 30 40 60 1.46 28 40 20 50 60 1.44 29 30 30 60 70 1.30 表 3 响应面试验方差分析
Table 3. Variance analysis of response surface test
方差来源 平方和 自由度 均方 F值 P值 模型 0.085 14 6.04×10-3 19.49 <0.0001 A(液料比) 0.011 1 0.011 36.74 <0.0001 B(提取时间) 5.74×10-4 1 5.74×10-4 1.85 0.195 C(乙醇含量) 6.28×10-4 1 6.28×10-4 2.03 0.1765 D(提取温度) 1.75×10-3 1 1.75×10-3 5.65 0.0322 AB 9.92×10-6 1 9.92×10-6 0.032 0.8605 AC 7.78×10-4 1 7.78×10-4 2.51 0.1353 AD 5.55×10-5 1 5.55×10-5 0.18 0.6786 BC 0.012 1 0.012 37.99 <0.0001 BD 6.80×10-3 1 6.80×10-3 21.94 0.0004 CD 3.46×10-4 1 3.46×10-4 1.12 0.3086 A2 5.88×10-4 1 5.88×10-4 1.9 0.1898 B2 5.61×10-3 1 5.61×10-3 18.09 0.0008 C2 0.011 1 0.011 34.63 <0.0001 D2 0.039 1 0.039 125.49 <0.0001 残差 4.34×10-3 14 3.10×10-4 - - 失拟项 4.05×10-3 10 4.05×10-4 5.55 0.0564 纯误差 2.91×10-4 4 7.29×10-5 - - 总和 0.089 28 - - - 表 4 总黄酮对菌种的抑菌圈直径
Table 4. Diameters of inhibition zones on bacteria by flavonoid extract, mm
(单位/mm) 大肠杆菌 金黄色葡萄球菌 枯草芽孢杆菌 空白 菊芋总黄酮 18.48±0.69 8.34±0.29 8.53±0.34 - 18.21±0.90 8.53±0.35 8.56±0.34 18.05±0.88 8.57±0.27 8.43±0.23 阳性对照 19.00±0.22 18.18±0.28 17.00±0.25 - 18.76±0.31 18.07±0.25 16.94±0.25 18.81±0.45 18.11±0.16 16.98±0.22 表 5 总黄酮对大肠杆菌的最低抑菌质量浓度(MIC)
Table 5. Minimal inhibitory concentration (MIC) of flavonoid extract against E.coli
抑菌液质量浓度
/(mg·mL-1)大肠杆菌 40 无长菌 20 无长菌 10 长菌 5 大量长菌 2.5 大量长菌 阳性对照 大量长菌 阴性对照 无长菌 -
[1] 中国植物志编辑委员会.中国植物志[M].北京:科学出版社, 1980:359. [2] 刘海伟, 刘兆普, 刘玲, 等.菊芋叶片提取物抑菌活性与化学成分的研究[J].天然产物研究与开发, 2007, 19(3):405-409. http://www.cnki.com.cn/Article/CJFDTOTAL-TRCW200703010.htm [3] 张海娟, 刘玲, 郑晓涛, 等.菊芋叶片绿原酸的提取工艺条件优化研究[J].食品工业科技, 2011, 32(5):261-262, 265. http://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201105058.htm [4] JAISWAL RAKESH, DESHPANDE SAGAR, KUHNERT NIKOLAI. Profiling the chlorogenic acids of Rudbeckia hirta, Helianthus tuberosus, Carlina acaulis and Symphyotrichum novae-angliae leaves by LC-MS(n).[J]. Phytochemical Analysis, 2011, 22(5):432-441. doi: 10.1002/pca.v22.5 [5] 延玺, 刘会青, 邹永青, 等.黄酮类化合物生理活性及合成研究进展[J].有机化学, 2008, 28(9):1534. http://www.cnki.com.cn/Article/CJFDTOTAL-YJHU200809006.htm [6] NASIR TAJUDDEEN, MUHAMMAD SANI SALLAU, ALIYU MUHAMMAD MUSA, et al. Flavonoids with antimicrobial activity from the stem bark of Commiphora pedunculata (Kotschy & amp; Peyr.) Engl.[J].Natural Product Research, 2014, 28(21):1915. doi: 10.1080/14786419.2014.947488 [7] ZOU Z X, XU P S, WU C R, et al. Carboxymethyl flavonoids and a chromone with antimicrobial activity from Selaginella moellendorffii Hieron[J]. Fitoterapia, 2016, 111:124. doi: 10.1016/j.fitote.2016.04.022 [8] 刘玲玲, 孔涛, 王海英, 等.菊芋总黄酮提取工艺研究[J].山西农业科学, 2008, (09):62-65. http://www.cnki.com.cn/Article/CJFDTOTAL-TRCW201211030.htm [9] 郑晓涛, 隆小华, 刘玲, 等.菊芋叶总黄酮提取工艺优化及含量动态变化[J].天然产物研究与开发, 2012, 24(11):1642-1645, 1689. http://www.cnki.com.cn/Article/CJFDTOTAL-TRCW201211030.htm [10] 杨明俊, 王亮, 吴婧, 等.菊芋叶黄酮类化合物的体外抗氧化活性研究[J].贵州农业科学, 2011, 39(4):52-54. http://www.cnki.com.cn/Article/CJFDTOTAL-GATE201104019.htm [11] 李淑红, 王京仁, 成钢, 等.12种中草药对金黄色葡萄糖球菌体外抑菌作用的研究[J].黑龙江畜牧兽医, 2014, (13):148-149. [12] 吴婧. 菊芋叶黄酮类化合物的提取及其抗氧化性、抗肿瘤和抑菌性的研究[D]. 兰州: 兰州理工大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10731-1011134194.htm