Optimizing Culture Medium and Antioxidant Activity of Extracellular Polysaccharides in Liquid Fermentation of Flammulina velutipes
-
摘要: 应用响应面分析法考查葡萄糖、蛋白胨、KH2PO4、果蔬汁用量对金针菇液体发酵胞外多糖的影响,分析胞外多糖抗氧化活性。试验结果表明,对金针菇胞外多糖影响大小依次为:蛋白胨> KH2PO4 >果蔬汁>葡萄糖,所确定的最优培养基质量分数为:葡萄糖2.46%,蛋白胨0.5%,KH2PO4 0.1%,果蔬汁15%,在此条件下胞外多糖质量浓度为0.83 mg·mL-1。通过测定金针菇液体发酵胞外多糖的抗氧化活性,证明金针菇胞外多糖对DPPH自由基和ABTS自由基都具有较强的清除作用,当胞外多糖质量浓度大于2 mg·mL-1时,其对DPPH自由基的清除率相比同质量浓度下的Vc要高;当胞外多糖质量浓度大于1.5 mg·mL-1时,其对ABTS自由基的清除率与同质量浓度下的Vc的清除率相近,达到99.87%。Abstract: A response surface experiment was conducted to optimize the fermentation of Flammulina velutipes for the extracellular polysaccharides (EPS). Liquid media with varied amounts of glucose, peptone, KH2PO4, fruit and vegetable juices were used for the experimentation. At end of the process, the antioxidant activity of EPS in each liquid suspension was determined as the criterion for optimization. The results showed that (a) the effect of ingredients in medium on the antioxidant activity ranked as peptone > KH2PO4 > fruit/vegetable juices > glucose; (b) the medium containing 2.46% glucose, 0.5% peptone, 0.1% KH2PO4 and 15% fruit/vegetable juices produced the highest EPS in the suspension at 0.83 mg·mL-1; (c) at concentrations exceeding 2 mg·mL-1, EPS obtained from the fermentation exhibited a strong scavenging effect on DPPH and ABTS free radicals; (d) at a same concentration level, EPS had a greater DPPH free radical scavenging rate than Vc; and, (e) at concentrations higher than 1.5 mg·mL-1, EPS exhibited a scavenging rate on ABTS free radicals similar to Vc, reaching 99.87%.
-
表 1 试验因素水平及编码
Table 1. Experimental factors and codes
因素 编码符号 编码水平 -1 0 1 葡萄糖/% A 1.5 2 2.5 蛋白胨/% B 0.1 0.3 0.5 KH2PO4/% C 0.1 0.3 0.5 果蔬汁/% D 5 10 15 表 2 响应面中心组合设计试验及结果
Table 2. Response surface central composite design and results
组别 因素 胞外多糖/(mg·mL-1) A B C D 1 0 -1 0 -1 0.53 2 0 1 1 0 0.42 3 -1 0 -1 0 0.15 4 1 -1 0 0 0.42 5 1 0 1 0 0.3 6 0 -1 -1 0 0.1 7 1 0 0 -1 0.53 8 0 0 0 0 0.57 9 -1 0 1 0 0.57 10 0 1 0 -1 0.54 11 0 0 -1 1 0.52 12 0 0 0 0 0.51 13 -1 1 0 0 0.48 14 1 0 -1 0 0.53 15 0 0 1 -1 0.49 16 -1 0 0 1 0.46 17 -1 0 0 -1 0.48 18 1 1 0 0 0.39 19 0 0 0 0 0.48 20 0 0 0 0 0.5 21 0 1 -1 0 0.58 22 -1 -1 0 0 0.21 23 0 0 1 1 0.61 24 0 1 0 1 0.74 25 0 0 -1 -1 0.41 26 1 0 0 1 0.62 27 0 -1 1 0 0.53 28 0 0 0 0 0.45 29 0 -1 0 1 0.52 表 3 胞外多糖方差分析结果
Table 3. Variance analysis on EPS content
方差来源 平方和 自由度 均方和 F P 模型 0.50 14 0.04 19.70 < 0.0001 A-葡萄糖 0.02 1 0.02 8.89 0.0099 B-蛋白胨 0.06 1 0.06 32.39 < 0.0001 C-磷酸二氢钾 0.03 1 0.03 18.22 0.0008 D-果蔬汁 0.02 1 0.02 11.02 0.0051 AB 0.02 1 0.02 12.39 0.0034 AC 0.11 1 0.11 58.18 < 0.0001 AD 0.0030 1 0.0030 1.67 0.2177 BC 0.09 1 0.09 47.93 < 0.0001 BD 0.01 1 0.01 6.07 0.0273 CD 0.00 1 0.00 0.014 0.9083 A2 0.03 1 0.03 18.44 0.0007 B2 0.007 1 0.007 3.62 0.0777 C2 0.03 1 0.03 14.23 0.0021 D2 0.05 1 0.05 30.17 < 0.0001 残差 0.03 14 0.002 失拟项 0.02 10 0.02 0.82 0.6360 纯误差 0.008 4 0.002 总离差 0.53 28 确定系数R-Squared 0.9517 调整系数Adj R-Squared 0.9034 -
[1] 魏金康.智慧之菇金针菇[J].北京农业, 2015, 35(10):37. http://d.wanfangdata.com.cn/Periodical/beijny201510018 [2] YAHAYA N F M, RAHMAN M A, ABDULLAH N. Therapeutic potential of mushrooms in preventing and ameliorating hypertension[J]. Trends in Food Science & Technology, 2014, 39(2):104-115. http://repository.um.edu.my/94771/ [3] LIN L, CUI F, ZHANG J, et al. Antioxidative and renoprotective effects of residue polysaccharides from Flammulina velutipes[J]. Carbohydrate Polymers, 2016, 146:388. doi: 10.1016/j.carbpol.2016.03.071 [4] 柴新义, 向玉勇, 万美娟, 等.金针菇液体发酵培养工艺的优化研究[J].文山学院学报, 2012, 25(3):12-15. http://d.wanfangdata.com.cn/Periodical/wssfgdzkxxxb201203005 [5] 蒋冬花, 张萍华.深层培养诸因素对金针菇菌丝体生长的影响[J].食用菌学报, 1997, 4(3):40-44. http://www.cqvip.com/QK/98175X/199703/2676989.html [6] 姜宁, 刘晓鹏, 杨洪, 等.金针菇液体培养基优化研究[J].安徽农业科学, 2007, 35(21):6429-6430. doi: 10.3969/j.issn.0517-6611.2007.21.045 [7] FIDLER G, RODINO S, BUTU A, et al. Optimization of submerged culture conditions for Flammulina velutipes on SBD culture medium[J]. Journal of Biotechnology, 2015, 208:S103. [8] 李春红.金针菇高产栽培技术[J].河南农业, 2014, 25(1):47. http://d.wanfangdata.com.cn/Periodical/nykjtx201009092 [9] ZHANG Z, LV G, HE W, et al. Effects of extraction methods on the antioxidant activities of polysaccharides obtained from Flammulina velutipes[J]. Carbohydrate polymers, 2013, 98(2):1524-1531. doi: 10.1016/j.carbpol.2013.07.052 [10] KHURI A I, MUKHOPADHYAY S. Response surface methodology[J]. Wiley Interdisciplinary Reviews:Computational Statistics, 2010, 2(2):128-149. doi: 10.1002/wics.v2:2 [11] 何轩辉, 廖森泰, 刘吉平, 等.应用Box-Behnken组合设计优化金针菇粗多糖提取条件[J].食用菌学报, 2008, 15(3):64-67. http://d.wanfangdata.com.cn/Periodical/syjxb200803012 [12] CHEHREGHANI S, NOAPARAST M, REZAI B, et al. Bonded-particle model calibration using response surface methodology[J]. Particuology, 2017, 32:141-152. doi: 10.1016/j.partic.2016.07.012 [13] 傅明辉, 洪梅达.金针菇子实体多糖的抗氧化活性的研究[J].食品研究与开发, 2011, 32(12):20-22. doi: 10.3969/j.issn.1005-6521.2011.12.006 [14] 张丽霞, 赵丽娟.金针菇多糖的抗氧化活性研究[J].西南农业学报, 2014, 27(1):240-243. http://d.wanfangdata.com.cn/Periodical/xnnyxb201401046 [15] HUA D, ZHANG D, HUANG B, et al. Structural characterization and DPPH路radical scavenging activity of a polysaccharide from Guara fruits[J]. Carbohydrate polymers, 2014, 103:143-147. doi: 10.1016/j.carbpol.2013.12.009 [16] SHI M, ZHANG Z, YANG Y. Antioxidant and immunoregulatory activity of Ganoderma lucidum polysaccharide (GLP)[J]. Carbohydrate polymers, 2013, 95(1):200-206. doi: 10.1016/j.carbpol.2013.02.081 [17] ZHAO J Q, WANG Y M, YANG Y L, et al. Isolation and identification of antioxidant and α-glucosidase inhibitory compounds from fruit juice of Nitraria tangutorum[J]. Food Chemistry, 2017, 227(1):93. http://www.sciencedirect.com/science/article/pii/S0308814617300328 [18] 赵光远, 陈美丽, 许艳华, 等.超高压微射流对石榴汁微生物及抗氧化活性的研究[J].食品科技, 2017, 43(2):89-93. [19] GAO T, MA S, SONG J, et al. Antioxidant and immunological activities of water-soluble polysaccharides from Aconitum kusnezoffii Reichb[J]. International Journal of Biological Macromolecules, 2011, 49(4):580. doi: 10.1016/j.ijbiomac.2011.06.017