Screening Bacillus Strains from High-altitude Regions in Search for Identifiable Biological Agents to Control Root Rot Disease in Plants
-
摘要: 本研究从82株高海拔来源菌株中筛选对根腐病具有较强抑制作用的拮抗生防菌。利用平板对峙法初步筛选根腐生防菌,利用牛津杯法测定抑菌活性,筛选获得FJAT-19708和FJAT-20265共2株拮抗根腐的菌株,经16S rRNA基因序列分析均鉴定为Bacillus subtilis枯草芽胞杆菌,有望用于控制植物根腐病。Abstract: In search of effective biocontrol species with antagonistic activities against root rot disease in plants, 82 strains of Bacillus bacteria from the high-altitude regions in China were screened. The initial screening was performed on PDA agar plates, and an Oxford cup method was applied to determine the possibly existing antibacterial activities. In the end, FJAT-19708 and FJAT-20265 showed the strongest activities against the root rot. And, their 16S rRNA gene sequences were found homologous to that of Bacillus subtilism.
-
Key words:
- Bio-controlling strain /
- Bacillus subtilism /
- root rot
-
表 1 菌株信息
Table 1. Information on strains
序号 菌株编号 来源 1 FJAT-19693 可可西里 2 FJAT-19697 可可西里 3 FJAT-19698 可可西里 4 FJAT-19699 可可西里 5 FJAT-19700 可可西里 6 FJAT-19701 可可西里 7 FJAT-19704 可可西里 8 FJAT-19705 可可西里 9 FJAT-19708 可可西里 10 FJAT-19709 可可西里 11 FJAT-20174 可可西里 12 FJAT-20179 可可西里 13 FJAT-20181 可可西里 14 FJAT-20185 可可西里 15 FJAT-20188 可可西里 16 FJAT-20191 可可西里 17 FJAT-20198 可可西里 18 FJAT-20200 可可西里 19 FJAT-20201 可可西里 20 FJAT-20203 可可西里 21 FJAT-20204 可可西里 22 FJAT-20208 可可西里 23 FJAT-20210 可可西里 24 FJAT-20222 可可西里 25 FJAT-20235 可可西里 26 FJAT-20237 可可西里 27 FJAT-20239 可可西里 28 FJAT-20243 可可西里 29 FJAT-20244 可可西里 30 FJAT-20247 可可西里 31 FJAT-20248 可可西里 32 FJAT-20249 可可西里 33 FJAT-20251 可可西里 34 FJAT-20252 可可西里 35 FJAT-20253 可可西里 36 FJAT-20254 可可西里 37 FJAT-20255 可可西里 38 FJAT-20256 可可西里 39 FJAT-20258 可可西里 40 FJAT-20259 可可西里 41 FJAT-20260 可可西里 42 FJAT-20261 可可西里 43 FJAT-20262 可可西里 44 FJAT-20263 可可西里 45 FJAT-20264 可可西里 46 FJAT-20265 可可西里 47 FJAT-20266 可可西里 48 FJAT-20267 可可西里 49 FJAT-20288 可可西里 50 FJAT-20877 西藏 51 FJAT-20878 西藏 52 FJAT-20887 西藏 53 FJAT-20888 西藏 54 FJAT-20895 西藏 55 FJAT-20897 西藏 56 FJAT-20926 西藏 57 FJAT-20927 西藏 58 FJAT-20961 西藏 59 FJAT-20964 西藏 60 FJAT-20973 西藏 61 FJAT-20985 西藏 62 FJAT-21156 西藏 63 FJAT-21719 可可西里 64 FJAT-21720 可可西里 65 FJAT-21721 可可西里 66 FJAT-21723 可可西里 67 FJAT-21724 西藏 68 FJAT-21725 西藏 69 FJAT-21727 可可西里 70 FJAT-21729 西藏 71 FJAT-21730 可可西里 72 FJAT-21734 西藏 73 FJAT-21735 西藏 74 FJAT-21736 西藏 75 FJAT-21737 可可西里 76 FJAT-21738 可可西里 77 FJAT-21888 可可西里 78 FJAT-21901 可可西里 79 FJAT-21902 可可西里 80 FJAT-22554 可可西里 81 FJAT-22555 可可西里 82 FJAT-22558 可可西里 表 2 芽胞杆菌对尖孢镰刀菌FJAT-30512的抑菌作用
Table 2. Inhibitory effect of Bacillus strains on Fusarium oxysporum FJAT-30512
菌株编号 抑菌圈直径/mm FJAT-19699 6.82±0.5 FJAT-19700 6.08±0.31 FJAT-19704 7.87±0.18 FJAT-19708 7.31±0.65 FJAT-19711 6.43±0.26 FJAT-20239 5.58±0.28 FJAT-20264 5.62±0.04 FJAT-20265 7.17±0.45 FJAT-20267 6.40±0.23 FJAT-20877 7.35±0.65 FJAT-20887 5.29±0.19 FJAT-20927 4.99±0.42 FJAT-20964 6.65±0.39 FJAT-21720 6.50±0.53 FJAT-21729 3.8±0.29 FJAT-21734 4.69±0.05 FJAT-21739 4.02±0.47 FJAT-21888 1.99±0.18 FJAT-21902 4.19±0.27 FJAT-22554 3.72±0.25 Hygromycin 14.419±0.05 表 3 不同菌株对腐皮镰刀菌FJAT-176的抑菌圈直径
Table 3. Diameters of inhibition zone of Bacillus strains against growth of F. solani FJAT-176
菌株编号 抑菌圈直径/mm FJAT-19699 0 FJAT-19700 9.15±0.13 FJAT-19704 7.38±0.14 FJAT-19708 9.94±0.96 FJAT-19711 9.3±0.05 FJAT-20239 9.63±0.37 FJAT-20264 9.09±0.32 FJAT-20265 9.97±0.29 FJAT-20267 0 FJAT-20877 8.68±0.14 FJAT-20887 0 FJAT-20964 8.78±0.44 FJAT-21720 0 Hygromycin 32.57±0.04 表 4 2株芽胞杆菌与参考菌株的16S rDNA同源性
Table 4. 16S rRNA homology between two Bacillus strains and referenceas
菌株编号 16S rRNA 中文名称 相似性/% FJAT-19708 Bacillus subtilis 枯草芽胞杆菌 99.37 FJAT-20265 Bacillus subtilis 枯草芽胞杆菌 99.37 -
[1] SAJANN S, JAMADAR M M. In vitro evaluation of fungicides, biocontrol agents and botanicals for their bioefficacy against root rot of acid lime (Citrus aurantifolia Swingle) in northern Karnataka[J]. Biotechnology Progress, 2016, 18(3):530-537. [2] HEMMATI R. Evaluation of trichoderma isolates for biological control of rhizoctonia root rot of bean in Zanjan[J]. Journal of Plant Protection, 2016, 29(4):471-480. [3] FERNANDEZ M R, FOX S L, HUCL P, et al. Root rot severity and fungal populations in spring common, durum and spelt wheat, and Kamut grown under organic management in western Canada[J]. Canadian Journal of Plant Science, 2017, 94(5):937-946. [4] HAMZA A, MOHAMED A, HAMED S. New trends for biological and non-biological control of tomato root rot, caused by Fusarium solani, under greenhouse conditions[J]. Egyptian Journal of Biological Pest Control, 2016, 26(1):89-96. [5] PEREG L L. Black root rot of cotton in Australia:the host, the pathogen and disease management[J]. Crop and Pasture Science, 2017, 64(11-12):1112-1126. [6] 汪雪静, 卜春亚, 靳永胜, 等.草莓根腐病菌拮抗细菌的分离与鉴定[J].园艺学报, 2011, 38(9):1657-1666. http://d.wanfangdata.com.cn/Periodical/yyxb201109004 [7] 刘丽云, 刘晓林, 刘志恒, 等.辣椒根腐病菌生物学特性研究[J].沈阳农业大学学报, 2007, 38(1):54-58. http://d.wanfangdata.com.cn/Periodical/synydxxb200701011 [8] WANG L Y, XU L B, HE Y, et al. Separation and screening of biocontrol actinomyces against alfalfa root rot[J]. Plant Diseases and Pests, 2010, 1(2):10-37. [9] GV C A W T, DER B A V, DER D K V, et al. Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporumf.sp. radicis-lycopersici[J]. Molecular Plant-Microbe Interactions, 1998, 11(11):1069-1077. doi: 10.1094/MPMI.1998.11.11.1069 [10] ZHANG S M. Isolation and characterization of antifungal endophytic bacteria from soybean[J]. Microbiology, 2008, 35(10):1593-1599. [11] KHALEQUZZAMAN K M. Control of foot and root rot of lentil by using different management tools[J]. Journal of Advanced Research, 2016, 5(1):35-42. [12] XIA P, GUO H, ZHAO H, et al. Optimal fertilizer application for panax notoginseng and effect of soil water on root rot disease and saponin contents[J]. Journal of Ginseng Research, 2016, 6(1):38-46. [13] 顾鑫, 于铭, 丁俊杰, 等.施用长效缓释尿素对大豆根腐病及产量的影响[J].农林学报, 2016, 6(2):44-47. http://d.wanfangdata.com.cn/Periodical/zgncxkkj201602007 [14] 李琼芳, 曾华兰, 叶鹏盛, 等.哈茨木霉(Trichoerma harzianum)T23生防菌筛选及防治中药材根腐病的研究[J].西南大学学报:自然科学版, 2007, 29(11):119-122. [15] 陈红彩, 游杏, 丁当, 等.白掌根腐病生防菌的筛选与鉴定[J].广东农业科学, 2016, 43(1):89-92. http://d.wanfangdata.com.cn/Periodical/gdnykx201601017 [16] 台莲梅, 郭永霞, 张亚玲, 等.木霉生防菌对大豆幼苗的促生作用及对根腐病的防治效果[J].安徽农业科学, 2013, 41(11):4820-4821. doi: 10.3969/j.issn.0517-6611.2013.11.044 [17] FAYED S, GHAZAL M, MOSTAFA A, et al. Biochemical actvity of domestic isolate of Bacillus mycoides against some root rot fungi of phasoleous volgaris[J]. Journal of Biological Chemistry, 2013, 8(3):297-317. [18] 葛慈斌, 刘波, 蓝江林, 等.生防菌JK-2对尖孢镰刀菌抑制特性的研究[J].福建农业学报, 2009, 24(1):29-34. http://www.fjnyxb.cn/CN/abstract/abstract308.shtml [19] PHAE C G, SHODA M, KITA N, et al. Biological control of crown and root rot and bacterial wilt of tomato by Bacillus subtilis NB22[J]. Japanese Journal of Phytopathology, 1992, 58(3):329-339. doi: 10.3186/jjphytopath.58.329 [20] ESTEVEZ D J C, PERCICH J A, GRAHAM P H. Integrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in Minnesota[J]. Field Crops Research, 2002, 74(2-3):107-115. doi: 10.1016/S0378-4290(01)00200-3 [21] 郑雪芳, 刘波, 朱育菁, 等.番茄青枯病生防芽胞杆菌的筛选与鉴定[J].中国生物防治学报, 2016, 32(5):657-665. http://d.wanfangdata.com.cn/Periodical/zgswfz201605016 [22] 孔建, 王文夕, 赵白鸽, 等.枯草芽孢杆菌B-903菌株的研究Ⅰ.对植物病原菌的抑制作用和防治试验[J].中国生物防治学报, 1999, 15(4):157-161. http://d.wanfangdata.com.cn/Periodical/zgswfz199904004 [23] 晏立英, 周乐聪, 谈宇俊, 等.油菜菌核病拮抗细菌的筛选和高效菌株的鉴定[J].中国油料作物学报, 2005, 27(2):55-57. http://d.wanfangdata.com.cn/Periodical/zgylzwxb200502014 [24] ELLIOTT M L, JARDIN E A D, JR W E B, et al. Viability and stability of biological control agents on cotton and snap bean seeds[J]. Pest Management Science, 2001, 57(8):695-706. doi: 10.1002/(ISSN)1526-4998 [25] LI Y, ZHANG L, WANG C, et al. Antagonistic mechanism and control effect of Bacillus subtilis Y2 against Fusarium oxysporum causing soybean root rot[J].African Journal of Microbiology Research, 2013, 7(8):652-656. [26] LI Y G, MA F M. Antagonistic mechanism of Fusarium oxysporum of soybean root rot by Bacillus subtilis[J]. Applied Mechanics and Materials, 2011, 108(3):127-131. [27] KITA N, OHYA T, UEKUSA H, et al. Biological control of damping-off of tomato seedlings and cucumber phomopsis root rot by Bacillus subtilis RB14-C[J]. Japan Agricultural Research Quarterly, 2005, 39(2):109-114. doi: 10.6090/jarq.39.109