Isolation and Composting Efficiency of Cellulose-degrading Fungus from Litter Fermentation Bed in Pig Pan
-
摘要: 采用CMC-Na平板法和刚果红染色法从猪发酵床陈化垫料中分离到1株纤维素高效降解真菌M6。该菌株测序后的ITS基因序列与NCBI数据库进行BLAST比对,并构建系统发育树,该菌株初步鉴定为草酸青霉。优化固态发酵产酶工艺,确定最佳产酶条件:以麸皮+羧甲基纤维素钠为碳源,豆粕为氮源,初始pH值为6.0,接种量为10%,发酵温度为30℃、发酵时间为96 h,羧甲基纤维素酶酶活最高可达1 446 U·g-1,是优化前的2.31倍。堆肥试验结果表明:接种M6组和EM菌剂组均在第3 d进入高温期(>50℃),且高温分别维持了10 d和6 d;菌株M6组、EM组、对照组纤维素降解率分别为41.1%、38.8%、14.8%。因此,菌株M6组高温维持时间长、纤维素降解率高,在发酵床陈化垫料堆肥腐熟发酵中具有潜在的应用前景。Abstract: A fungus, M6, that displayed a powerful ability to degrade cellulose was isolated from the waste fermentation beds at pig farms using the CMC-Na plate and Congo red staining methods. ITS sequence of the isolated strain was blasted with those from NCBI database, and the phylogenetic tree constructed to arrive at a preliminary identification for the fungus as Penicillium oxalate. Subsequently, an optimized enzyme-producing fermentation process on a solid medium inoculated with the isolated fungi was established. It included the application of bran and CMC-Na as the carbon source, soybean meal as the nitrogen source, pH 6.0 at the start, 10% inoculation rate, and fermentation at 30℃ for 96 h. The carboxymethyl cellulase activity of the material increased 2.31 times due to the optimization that reached 1 446 U·g-1. In a composting experiment on the fermentation beds inoculated with M6, EM or control, M6 and EM raised the bed temperature to greater than 50℃ on the 3rd day after start of fermentation, and maintained at the level for 10 d and 6 d, respectively. The cellulose degradation rate was 41.1% with M6, 38.8% with EM, and 14.8% with control. It suggested that, among the 3 tested fungi, M6 was most efficient on the waste treatment for pig farms.
-
表 1 不同起始pH对菌株M6产酶影响
Table 1. Effects on enzyme production of M6 cultured with different initial pH
pH 3 4 5 6 7 8 9 CMCase酶活力/(U·g-1) 243 581 627 720 387 124 112 表 2 不同培养温度对菌株M6产酶影响
Table 2. Effects on enzyme production of M6 cultured under varied temperatures
温度/℃ 20 25 28 30 35 40 45 50 CMCase酶活力/(U·g-1) 157 413 627 846 541 378 176 146 表 3 不同接种量对菌株M6产酶影响
Table 3. Effects on enzyme production of M6 cultured with different inoculum concentration
不同接种量/% 2 4 8 10 12 14 CMCase酶活力/(U·g-1) 210 374 598 635 432 127 -
[1] 韩永亮, 荣湘民, 郭春铭, 等.微生物菌剂对生猪养殖垫料发酵效果的影响[J].安徽农业科学, 2011, 39(15):8957-8960, 9012. doi: 10.3969/j.issn.0517-6611.2011.15.052 [2] 郭春铭, 荣湘民, 韩永亮, 等.微生物菌剂对生猪养殖垫料堆肥腐熟效果的研究[J].湖南农业科学, 2011, 41(7):52-56+60. http://d.wanfangdata.com.cn/Periodical/hunannykx201107016 [3] 李娟. 发酵床不同垫料筛选及其堆肥化效应的研究[D]. 泰安: 山东农业大学, 2012. [4] 杨敬辉, 吴琴燕, 陈宏州, 等.发酵床猪粪腐解菌群筛选[J].生态学杂志, 2012, 31(3):659-663. http://d.wanfangdata.com.cn/Periodical/stxzz201203023 [5] 魏景超.真菌鉴定手册:第1版[M].上海:上海科学技术出版社, 1979. [6] 陆文清, 刘兴海, 刑建军, 等. NY/T 912-2004饲料添加剂纤维素酶活力的测定[S]. 北京: 中国农业出版社, 2005. [7] 尹红梅, 陈文辉, 王震, 等.发酵床陈化垫料腐解复合微生物菌剂筛选[J].家畜生态学报, 2013, 34(12):30-33. doi: 10.3969/j.issn.1673-1182.2013.12.007 [8] 邹潇潇, 易子霆, 孙前光, 等.纤维素降解真菌DF14101的筛选与鉴定[J].微生物学杂志, 2016, 36(6):68-72. http://d.wanfangdata.com.cn/Periodical/wswxzz201606011 [9] 石文卿, 陶能国, 刘跃进, 等.一株高产纤维素酶真菌的分离及产酶特性研究[J].环境工程学报, 2011, 5(6):1435-1440. http://d.wanfangdata.com.cn/Periodical/hjwrzljsysb201106046 [10] 张名爱, 王宝维.鹅源高活力纤维素分解菌的分离鉴定[J].中国家禽, 2012, 34(5):12-15. http://d.wanfangdata.com.cn/Periodical/zgjq201205004 [11] 杨友坤, 朱凤香, 王卫平, 等.堆肥中产纤维素酶真菌的筛选及其产酶条件[J].浙江农业学报, 2010, 22(4):464-468. http://d.wanfangdata.com.cn/Periodical/zjnyxb201004013 [12] 王洪媛, 范丙全.三株高效秸秆纤维素降解真菌的筛选及其降解效果[J].微生物学报, 2010, 18(7):870-875. http://d.wanfangdata.com.cn/Periodical/wswxb201007005 [13] 刘爽, 范丙全.秸秆纤维素降解真菌QSH3-3的筛选及其特性研究[J].植物营养与肥料学报, 2012, 18(1):218-226. doi: 10.11674/zwyf.2012.11101 [14] 张蔚. 草酸青霉产β-葡萄糖苷酶发酵条件优化及其基因克隆的初步研究[D]. 开封: 河南大学, 2011. [15] 耿丽平, 陆秀君, 赵全利, 等.草酸青霉菌产酶条件优化及其秸秆腐解能力[J].农业工程学报, 2014, 30(3):170-179. http://d.wanfangdata.com.cn/Periodical/nygcxb201403023 [16] 吴琴燕, 陈宏州, 杨敬辉, 等. 5株土著真菌的纤维素降解活性分析[J].江西农业学报, 2011, 23(5):160-161. http://d.wanfangdata.com.cn/Periodical/jxnyxb201105051 [17] 许玉林, 郑月霞, 叶冰莹, 等.一株纤维素降解真菌的筛选及鉴定[J].微生物学通报, 2013, 40(2):220-227. http://d.wanfangdata.com.cn/Periodical/wswxtb201302004