Optimization of Lead Ion Removal from Sewage Using a Two-phase Aqueous Filtration System
-
摘要: 利用聚乙二醇(PEG)600和(NH4)2SO4双水相系统结合原子吸收光谱法对铅污染模拟的水体进行萃取工艺优化研究。在研究PEG600-(NH4)2SO4-H2O双水相体系中各单因素对铅离子的萃取率的影响基础上,再用响应面试验优化双水相萃取污水中铅的最佳萃取工艺。最终得到的最佳工艺为:PEG600体积分数为40.25%、(NH4)2SO4质量浓度为0.17 g·mL-1、pH为2.55、温度为40.28℃,在此工艺条件下的萃取率可达87.26%。Abstract: A PEG600 and (NH4)2SO4 two-phase aqueous filtration system was used in lab for studying the removal of lead ions from waste water. Based on the analytical data obtained from atomic absorption spectrometry, a response surface methodology was applied to optimize the technology. The optimal processing conditions included 40.25% on volume fraction of PEG600, 0.17 g·mL-1 of (NH4)2SO4, pH at 2.55, and temperature at 40.28 to render a lead removal rate of 87.47%.
-
表 1 组成的各组分的添加量
Table 1. Addition of components
序号 加水量/mL 加硫酸铵溶液量/mL 纯硫酸铵累计量/mL 溶液累计量/mL PEG体积分数/% 硫酸铵质量浓度/(g·mL-1) 1 0.5 0.30 0.360 3.21 22 11 2 0.5 0.50 0.960 4.21 17 23 3 0.5 0.60 1.680 5.31 13 32 4 0.5 0.89 2.748 6.70 10 41 5 0.5 0.95 3.888 8.15 8 48 6 0.5 1.09 5.196 9.74 7 53 7 0.5 1.75 7.296 11.99 6 61 8 0.5 2.25 9.996 14.74 5 68 注:质量浓度/%=[总质量(g)÷总体积(mL)]×100%;硫酸铵累计量=硫酸铵溶液量×密度(1.2 g·mL-1)。 表 2 响应面试验因素水平
Table 2. Factors and levels of response surface methodology
水平 因素 PEG600体积分数/% 硫酸铵质量浓度/(g·mL-1) pH值 温度/℃ -1 32 0.14 2.0 35 0 40 0.16 2.5 40 1 48 0.18 3.0 45 表 3 响应面试验结果
Table 3. Results of response surface methodology
试验号 因素 萃取率/% PEG600 硫酸铵 pH值 温度 1 0 0 -1 -1 75.61 2 0 1 0 -1 79.95 3 0 0 0 0 87.12 4 0 0 0 0 86.23 5 0 0 0 0 87.31 6 -1 0 1 0 81.83 7 1 0 1 0 75.12 8 0 0 1 1 76.52 9 1 1 0 0 78.56 10 0 0 0 0 89.12 11 -1 -1 0 0 70.95 12 0 -1 0 1 78.07 13 0 0 -1 1 80.62 14 -1 0 0 -1 70.15 15 0 -1 -1 0 75.69 16 0 1 1 0 83.25 17 1 -1 0 0 78.14 18 0 -1 0 -1 73.53 19 0 0 1 -1 81.57 20 1 0 0 1 80.38 21 -1 1 0 0 80.74 22 1 0 -1 0 78.53 23 0 -1 1 0 81.01 24 0 0 0 0 85.51 25 1 0 0 -1 75.09 26 0 1 0 1 81.16 27 -1 0 -1 0 70.54 28 0 1 -1 0 82.52 29 -1 0 0 1 72.68 表 4 响应面试验回归方程方差分析
Table 4. Variance analysis of regression equation in response surface experiment
变异来源 平方和 自由度 均方MS F值 P值 显著性 模型 699.97 14 50.00 18.24 < 0.0001 ** A-PEG600体积分数 29.86 1 29.86 10.89 0.0053 * B-硫酸铵浓度 69.07 1 69.07 25.19 0.0002 * C-pH值 20.78 1 20.78 7.58 0.0156 * D-温度 15.26 1 15.26 5.56 0.0334 * AB 21.95 1 21.95 8.01 0.0134 * AC 54.02 1 54.02 19.70 0.0006 * AD 1.90 1 1.90 0.69 0.4186 BC 5.27 1 5.27 1.92 0.1874 BD 2.77 1 2.77 1.01 0.3317 CD 25.30 1 25.30 9.23 0.0089 * A2 320.78 1 320.78 117.00 < 0.0001 ** B2 65.38 1 65.38 23.85 0.0002 * C2 69.35 1 69.35 25.30 0.0002 * D2 193.01 1 193.01 70.40 < 0.0001 ** 残差 38.38 14 2.74 失拟项 30.98 10 3.10 1.67 0.3270 不显著 纯误差 7.40 4 1.85 总离差 738.35 28 注:**为影响极显著(P<0.0001),*为影响显著(P<0.05)。 -
[1] 王娟, 王敏, 高宗军, 等.济南市岩溶水中铅的分布特征及污染来源分析[J].地下水, 2014, 36(5):10-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dixs201405004 [2] 蔡文洁.饮用水铅污染问题——公共健康的巨大挑战[J].中国环境科学, 2010, 30(8):1025. http://cnki.com.cn/Article/CJFDTotal-ZGHJ201008007.htm [3] 李伟, 柴金玲.新型萃取技术-双水相技术[J].化学教育, 2005, 1(3):7-8, 12. http://www.cqvip.com/QK/96493X/200503/15221042.html [4] HERIBERTO C J.Theory of phase formation in aqueous tow-phase syatems[J].Journal of Chromatography B, 1996, 680(2): 3-18. http://cn.bing.com/academic/profile?id=965aff728ce6af7862a6dcb18c51fbbe&encoded=0&v=paper_preview&mkt=zh-cn [5] LI S H, HE C Y, LIU H W, et al. Ionic Liquid-based aqueous two-phase system, a sample pretreatment procedure prior to high-performance Liquid chromatography of opium alkaloids[J].Journal of Chromatography, B, 2015, 826(1):59-61. http://cn.bing.com/academic/profile?id=355baa20eeb8bb28342e210af46669c6&encoded=0&v=paper_preview&mkt=zh-cn [6] ALBERTSSON P A. Partition of cell particles and macromolecules in polymer two-phase systems[J]. Advances in Protein Chemistry, 1970, 24(24):309-341. http://cn.bing.com/academic/profile?id=3f9f605ad110a84b0fd4c4193b9d7c0d&encoded=0&v=paper_preview&mkt=zh-cn [7] KULA M R, KRONER K H, HUSTEDT H. Purification of enzymes by liquid-liquid extraction[J]. Advances in Biochemical Engineering & Biotechnology, 1982, 74(1):73-118. http://cn.bing.com/academic/profile?id=c9e450e8ceb62e2c33ac672948b44500&encoded=0&v=paper_preview&mkt=zh-cn [8] 孙小梅, 罗剑清.金属离子在PEG-(NH4)2SO4-H2O体系中的液-液萃取行为[J].化学试剂, 1990, 12(6):367-369. doi: 10.1360/N032016-00110?slug=full%20text [9] 邓凡政, 陈银, 王在礼.聚乙二醇双水相中光度法测定金属[J].化学研究与应用, 2009, 21(4):534-536. http://www.cnki.com.cn/Article/CJFDTOTAL-HXYJ201209014.htm [10] 马前, 张小龙.国内外重金属废水处理新技术的研究进展[J].环境工程学报, 2007, 1(7):10-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjwrzljsysb200707002 [11] 谭志坚, 李芬芳, 邢建敏.双水相萃取技术在分离纯化中的应用[J].化工技术与开发, 2010, 39(8):30-31. http://mall.cnki.net/magazine/article/GXHG201008010.htm [12] 马伟超, 吕志民, 李一倩, 等. PEG/(NH4)2SO4双水相相图制作新方法的研究[J].食品工业科技, 2010, 31(10):113-115. http://gxhx.cbpt.cnki.net/WKB2/WebPublication/wkTextContent.aspx?colType=4&yt=2017&st=06 [13] 雷鸣, 田中干也, 廖柏寒, 等.硫化物沉淀法处理含EDTA的重金属废水[J].环境科学研究, 2008, 21(1):150-154. http://www.oalib.com/paper/4664247