Effects of Two Polyunsaturated Fatty Acids on Lipid Contents and SREBP1 Expression in Meat-type Ducks
-
摘要: 多不饱和脂肪酸(polyunsaturated fatty acids,PUFAs)主要通过调控脂肪生成基因和脂肪分解基因的表达来实现畜禽机体脂质的动态平衡。为了探明亚油酸和二十碳五烯酸(eicosapentaenoic acid,EPA)对肉鸭脂质和固醇调节元件结合1(sterol regulatory elemement binding protein 1,SREBP1)基因表达的影响,设置基础饲粮组、基础饲粮+4%亚油酸组、基础饲粮+4% EPA 3个处理饲喂樱桃谷母鸭,4、6、8和10周龄检测SREBP1 mRNA表达丰度和脂质含量,分析其表达与脂质指标的相关性。结果表明:饲粮中添加亚油酸和EPA可引起胸肌中饱和脂肪酸(saturated fatty acids,SFA)、多不饱和脂肪酸(PUFA)、必需脂肪酸(essential fatty acids,EFA)和血清甘油三酯(triglyceride,TG)、总胆固醇(total cholesterol,TCHO)、高密度脂蛋白(high density lipoprotein,HDL)的明显升高,说明2种脂肪酸对脂肪酸组成和脂质有影响,且亚油酸的影响效果强于二十碳五烯酸;引起SREBP1基因mRNA表达量下降,表明2种脂肪酸对SREBP1基因的转录具有抑制作用;SREBP1基因表达与腹脂、肌内脂肪(intramuscular fat,IMF)、不饱和脂肪酸(unsaturated acids,UFA)、多不饱和脂肪酸(PUFA)、必需脂肪酸(EFA)、甘油三酯(TG)、总胆固醇(TCHO)呈显著正相关(P < 0.05),表明SREBP1表达对脂质沉积有正向效应。综合结果揭示亚油酸和二十碳五烯酸与SREBP1基因互作调控肉鸭脂肪沉积。Abstract: Polyunsaturated fatty acids(PUFAs) play a critical role in animal lipid homeostasis by regulating the expressions of lipogenic and lipolytic genes. This study attempted to decipher the effects of linoleic acid and eicosapentaenoic acid (EPA) in diet on the lipids and the sterol regulatory element binding protein 1 (SREBP1) gene in meat-type ducks. Indoor-raised female Cherry Valley ducks were randomly divided into three groups to be fed each with either a basal diet, the basal diet+4% linoleic acid, or the basal diet+4% EPA. Content of lipids and abundance of SREBP1 mRNA were determined in 4, 6, 8 and 10 weeks after the feeding started. The addition of linoleic acid and EPA in the diet was found to raise the contents of saturated fatty acids, PUFAs and essential fatty acids (EFA) in the duck muscles as well as those of triglyceride (TG), total cholesterol (TCHO) and high-density lipoprotein (HDL) in the blood. The effect induced by the addition of linoleic acid was greater than that of EPA. The mRNA in liver SREBP1 declined with the added fatty acids suggesting their inhibitory effect on the transcription of the gene, with a slightly greater extent by EPA than linoleic acid. The expression of SREBP1 significantly correlated with the abdominal fat, intramuscular fat, unsaturated fatty acids, PUFA, EFA, serum TG and TCHO in the ducks. It appeared that linoleic acid, EPA and SREBP1 gene regulation interacted to affect the lipid deposit in the ducks.
-
Key words:
- meat-type duck /
- linoleic acid /
- eicosapentaenoic acid /
- lipids /
- SREBP1 gene
-
表 1 基础饲粮原料组成及营养水平
Table 1. Dietary composition and nutrients in feed
原料 含量/% 营养水平 含量 玉米 60.00 代谢能/(MJ·kg-1) 11.53 豆粕 19.40 粗蛋白质/% 18.47 麸皮 11.70 钙/% 1.10 棉籽饼 3.00 总磷/% 0.77 鱼粉 3.00 蛋氨酸/% 0.27 磷酸氢钙 1.50 赖氨酸/% 0.97 石粉 1.10 食盐 0.30 合计 100.00 表 2 不同处理樱桃谷鸭脂肪沉积比较
Table 2. Deposit of indicator lipids on treated ducks
项目 Ⅰ组 Ⅱ组 Ⅲ组 腹脂/% 2.26±0.44 2.52±0.33 2.67±0.42 肌内脂肪/% 8.56±1.15 9.01±0.46 8.87±0.44 饱和脂肪酸/% 43.98±0.33a 42.14±0.20b 42.92±0.37ab 不饱和脂肪酸/% 57.03±0.47 57.87±0.50 57.09±0.43 多不饱和脂肪酸/% 19.65±0.23a 22.87±0.20b 21.01±0.25ab 必需脂肪酸/% 19.37±0.32a 22.29±0.19b 20.57±0.24ab 甘油三酯/(mmol·L-1) 0.79±0.13a 1.10±0.19b 1.02±0.14b 总胆固醇/(mmol·L-1) 4.46±0.22a 5.68±0.17b 5.26±0.13ab 高密度脂蛋白/(mmol·L-1) 2.77±0.21a 3.98±0.32b 3.67±0.27ab 低密度脂蛋白/(mmol·L-1) 1.78±0.15 1.91±0.24 1.83±0.11 注:同行数据后不同小写字母表示差异显著(P < 0.05)。表 3同。 表 3 SREBP1基因在樱桃谷鸭肝脏中不同时期mRNA表达水平
Table 3. mRNA level of liver SREBP1 gene in Cherry Valley ducks at various growth periods
周龄 Ⅰ组 Ⅱ组 Ⅲ组 4 1.77±0.11a 1.21±0.18b 1.17±0.13b 6 2.23±0.13a 1.79±0.19b 1.73±0.14b 8 2.45±0.21a 2.13±0.15b 1.98±0.17b 10 4.88±0.14a 2.46±0.12b 2.34±0.13b 表 4 SREBP1基因表达与樱桃谷鸭脂质指标的相关性
Table 4. Correlation between SREBP1 gene expression and indicator lipids of Cherry Valley ducks
指标 相关系数 腹脂/% 0.78* 肌内脂肪/% 0.67* 饱和脂肪酸/% 0.13 不饱和脂肪酸/% 0.47* 多不饱和脂肪酸/% 0.51* 必需脂肪酸/% 0.48* 甘油三酯/(mmol·L-1) 0.67* 总胆固醇/(mmol·L-1) 0.53* 高密度脂蛋白/(mmol·L-1) 0.29 低密度脂蛋白/(mmo·L-1) 0.33 注:“*”表示相关性达显著水平(P < 0.05)。 -
[1] HAN J, LI E, CHEN L, et al. The CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1[J]. Nature, 2015, 524(7564):243-246. doi: 10.1038/nature14557 [2] YEN C F, JIANG Y N, SHEN T F, et al. Cloning and expression of the genes associated with lipid metabolism in Tsaiya ducks[J]. Poultry Science, 2005, 84(1):67-74. doi: 10.1093/ps/84.1.67 [3] FLEISCHMANN M, IYNEDJIAN P B. Regulation of sterol regulatory-element binding protein 1 gene expression in liver:role of insulin and protein kinase B/cAkt[J]. Biochemical Journal, 2000, 349(1):13-17. doi: 10.1042/bj3490013 [4] WANG Y, VISCARRA J, KIM S J, et al. Transcriptional regulation of hepatic lipogenesis[J]. Nature reviews Molecular cell biology, 2015, 16(11):678-689. doi: 10.1038/nrm4074 [5] CLARKE S D. Polyunsaturated fatty acid regulation of gene transcription:a molecular mechanism to improve the metabolic syndrome.[J]. Journal of Nutrition, 2001, 131(4):1129-1132. doi: 10.1093/jn/131.4.1129 [6] KOBATAKE K, SAKO K, IZAWA M, et al. Autora-diographic determination of brain pH following middle cerebral artery occlusion in the rat[J]. Stroke:A Journal of Cerebral Circulation, 1984, 15(3):540. doi: 10.1161/01.STR.15.3.540 [7] KERSTEN S, SSYDOUX J, PETERS J M, et al. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting[J]. Journal of Clinical Investigation, 1999, 103(11):1489-1498. doi: 10.1172/JCI6223 [8] SAMPATH H, NTAMBI J M. Polyunsaturated fatty acid regulation of gene expression[J]. Nutrition reviews, 2004, 62(9):333-339. doi: 10.1111/nure.2004.62.issue-9 [9] MAEKAWA M, WATANABE A, IWAYAMA Y, et al. Polyunsaturated fatty acid deficiency during neurodevelopment in mice models the prodromal state of schizophrenia through epigenetic changes in nuclear receptor genes[J]. Transl Psychiatry, 2017, 7(9):1229. doi: 10.1038/tp.2017.182 [10] JIN M, MONROIG Í, LU Y, et al. Dietary DHA/EPA ratio affected tissue fatty acid profiles, antioxidant capacity, hematological characteristics and expression of lipid-related genes but not growth in juvenile black seabream (Acanthopagrus schlegelii)[J]. PLoS One, 2017, 12(4):e0176216. doi: 10.1371/journal.pone.0176216 [11] 兰云贤.动物饲养标准[M].昆明:云南师范大学出版社, 2008:80-81. [12] 中华人民共和国农业部. 家禽生产性能名词术语和度量统计方法: NY/T823-2004[S]. 北京: 中国标准出版社, 2004. [13] LIAO T, WANG Y J, HU J Q, et al. Histone methyltransferase KMT5A gene modulates oncogenesis and lipid metabolism of papillary thyroid cancer in vitro[J]. Oncology Reports, 2018, 39(5):2185-2192. http://cn.bing.com/academic/profile?id=f44bf194fc56c79dc56fb61084a229d4&encoded=0&v=paper_preview&mkt=zh-cn [14] WANG L F, WANG X N, HUANG C C, et al. Inhibition of NAMPT aggravates high fat diet-induced hepatic steatosis in mice through regulating Sirt1/AMPKα/SREBP1 signaling pathway[J]. Lipids in health and disease, 2017, 16(1):82-95. doi: 10.1186/s12944-017-0464-z [15] YIN F, SHAREN G, YUAN F, et al. TIP30 regulates lipid metabolism in hepatocellular carcinoma by regulating SREBP1 through the Akt/mTOR signaling pathway[J]. Oncogenesis, 2017, 6(6):347. doi: 10.1038/oncsis.2017.49 [16] SIQINGAOWA, SEKAR S, GOPALAKRISHNAN V, et al. Sterol regulatory element-binding protein 1 inhibitors decrease pancreatic cancer cell viability and proliferation[J]. Biochemical and biophysical research communications, 2017, 488(1):136-140. doi: 10.1016/j.bbrc.2017.05.023 [17] FU R Q, LIU R R, ZHAO G P, et al. Expression profiles of key transcription factors involved in lipid metabolism in Beijing-You chickens[J]. Gene, 2014, 537(1):120-125. doi: 10.1016/j.gene.2013.07.109 [18] YANG Y, YANG Q, YANG J, et al. Angiotensin Ⅱ induces cholesterol accumulation and injury in podocytes[J]. Scientific Reports, 2017, 7(1):10672-10682. doi: 10.1038/s41598-017-09733-w [19] RUAN D, LIN Y C, CHEN W, et al. Effects of rice bran on performance, egg quality, oxidative status, yolk fatty acid composition, and fatty acid metabolism-related gene expression in laying ducks[J]. Poultry Science, 2015, 94(12):2944-2951. doi: 10.3382/ps/pev286 [20] ZHANG L, LI C, WANG F, et al. Treatment with PPARα Agonist Clofibrate Inhibits the Transcription and Activation of SREBPs and Reduces Triglyceride and Cholesterol Levels in Liver of Broiler Chickens[J]. PPAR Research, 2015(5):1-10. http://cn.bing.com/academic/profile?id=d12b3fc1a7dca4a4dd14b09b8fc82bd8&encoded=0&v=paper_preview&mkt=zh-cn [21] LI Q, ZHAO X L, GILBERT E R, et al. Confined housing system increased abdominal and subcutaneous fat deposition and gene expressions of carbohydrate response element-binding protein and sterol regulatory element-binding protein 1 in chicken[J]. Genetics and Molecular Research, 2015, 14(1):1220-1228. doi: 10.4238/2015.February.6.24 [22] WANG G, WILLIAMS C A, McCONN B R, et al. A high fat diet enhances the sensitivity of chick adipose tissue to the effects of centrally injected neuropeptide Y on gene expression of adipogenesis-associated factors[J]. Comparative Biochemistry and Physiology Part A Molecular & Integrative Physiology, 2017, 211(9):49-55. http://cn.bing.com/academic/profile?id=ae139a0a7511d10c7202bf11ed5a0b5d&encoded=0&v=paper_preview&mkt=zh-cn [23] 皮宇, 经语佳, 王梦芝, 等.不同脂肪酸对体外培养的瘤胃微生物活力和蛋白质含量的影响[J].动物营养学报, 2014, 26(1):260-269. http://www.cqvip.com/QK/98510X/201401/48510104.html [24] JUMP D B, BOTOLIN D, WANG Y, et al. Docosa-hexaenoic acid (DHA) and hepatic gene transcription[J]. Chemistry and Physics of Lipids, 2008, 153(1):3-13. doi: 10.1016/j.chemphyslip.2008.02.007 [25] YOSHIKAWA T, SHIMANO H, YAHAGI N, et al. Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements[J]. The Journal of Biological Chemistry, 2002, 277(3):1705-1711. doi: 10.1074/jbc.M105711200 [26] NAKAMURA M T, CHEON Y, LI Y, et al. Mechanisms of regulation of gene expression by fatty acids[J]. Lipids, 2004, 39(11):1077-1083. doi: 10.1007/s11745-004-1333-0 [27] MUHLHAUSLER B S, COOK-JOHNSON R, JAMES M, et al. Opposing effects of omega-3 and omega-6 long chain polyunsaturated Fatty acids on the expression of lipogenic genes in omental and retroperitoneal adipose depots in the rat[J]. Journal of Nutrition and Metabolism, 2010(4):927836-927845. http://cn.bing.com/academic/profile?id=e8e274b589d58b195996df6834bb77df&encoded=0&v=paper_preview&mkt=zh-cn