[1]
|
BIGGER J W. Treatment of staphylococcal infections with penicillin by intermittent sterilization[J]. Lancet, 1944, 244(6320):497-500. doi: 10.1016/S0140-6736(00)74210-3
|
[2]
|
COHEN N R, LOBRITZ M A, COLLINS J J. Microbial persistence and the road to drug resistance[J]. Cell Host Microbe, 2013, 13(6):632-642. doi: 10.1016/j.chom.2013.05.009
|
[3]
|
ADAMS K N, TAKAKI K, CONNOLLY L E, et al. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism[J]. Cell, 2011, 145(1):39-53. doi: 10.1016/j.cell.2011.02.022
|
[4]
|
CHONG Y P, PARK S J, KIM H S, et al. Persistent Staphylococcus aureus bacteria:a prospective analysis of risk factors, outcomes, and microbiologic and genotypic characteristics of isolates[J]. Medicine (Baltimore), 2013, 92(2):98-108. doi: 10.1097/MD.0b013e318289ff1e
|
[5]
|
HOFSTEENGE N, NIMWEGEN E V, SILANDER O K. Quantitative analysis of persister fractions suggests different mechanisms of formation among environmental isolates of E.coli[J]. BMC Microbiology, 2013, 13:25. doi: 10.1186/1471-2180-13-25
|
[6]
|
HOLLING N, DEDI C, JONES C E, et al. Evaluation of environmental scanning electron microscopy for analysis of Proteus mirabilis crystalline biofilms in situ on urinary catheters[J]. FEMS Microbiology Letters, 2014, 355(4):20-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0233660810
|
[7]
|
BORGMAN C J. Proteus mirabilis and its role in dacryocystitis[J]. Optometry and Vision Science, 2014, 91(9):230-235. doi: 10.1097/OPX.0000000000000347
|
[8]
|
周芳, 冉丹丹, 刘飞, 等.鸡源奇异变形杆菌的分离鉴定及系统进化分析[J].动物医学进展, 2015, 36(7):29-32. doi: 10.3969/j.issn.1007-5038.2015.07.006
|
[9]
|
李欣南, 韩镌竹, 宁宜宝.鸡源奇异变形杆菌的分离鉴定及耐药性分析[J].黑龙江畜牧兽医, 2015, (6):165-167, 289. http://www.cnki.com.cn/Article/CJFDTOTAL-HLJX201511055.htm
|
[10]
|
CLINICAL AND LABORATORY STANDARDS INSTITUTE. Reference method for broth dilution antifungal susceptibility testing of yeasts-second edition:approved standard M27-A[M]. Wayne, PA:CLSI, 2002.
|
[11]
|
BUTT A, HIGMAN V A, WILLIAMS C, et al. The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation[J]. The Biochemical Journal, 2014, 459(2):333-344. doi: 10.1042/BJ20140073
|
[12]
|
胡丽庆, 史煜波, 孙定河, 等.奇异变形杆菌耐药性的4年监测及碳青霉烯类耐药株的耐药机制研究[J].中国微生态学杂志, 2012, 24(7):611-614. http://d.old.wanfangdata.com.cn/Periodical/zgwstxzz201207010
|
[13]
|
PEARSON M M, SEBAIHIA M, CHURCHER C, et al. Complete genome sequence of uropathogenic Proteus mirabilis, a master of both adherence and motility[J]. Journal of Bacteriology, 2008, 190(11):4027-4037. doi: 10.1128/JB.01981-07
|
[14]
|
GRANT S S, HUNG D T. Persistence bacterial infections, antibiotic tolerance, and the oxidative stress response[J]. Virulence, 2013, 4(4):273-283. doi: 10.4161/viru.23987
|
[15]
|
GUSAROV I, SHATALIN K, STARODUBTSEVA M, et al. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics[J]. Science, 2009, 325(5964):1380-1384. doi: 10.1126-science.1175439/
|
[16]
|
LIU Y, IMLAY J A. Cell death from antibiotics without the involvement of reactive oxygen species[J]. Science, 2013, 339(6124):1210-1213. doi: 10.1126/science.1232751
|
[17]
|
FENG J, WEITNER M, SHI WL, et al. Eradication of biofilm-like microcolony structures of Borrelia burgdorferi by daunomycin and daptomycin but not mitomycin C in combination with doxycycline and cefuroxime[J]. Front Microbiol, 2016, 7:62. http://pubmedcentralcanada.ca/pmcc/articles/PMC4748043/
|
[18]
|
PU Y Y, ZHAO Z L, LI Y X, et al. Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells[J]. Mol Cell, 2016, 62(2):284-294. doi: 10.1016/j.molcel.2016.03.035
|
[19]
|
BALABAN, N Q, MERRIN J, CHAIT R, et al. Bacterial persistence as a phenotypic switch[J]. Science, 2004, 305(5690):1622-1625. doi: 10.1126/science.1099390
|
[20]
|
KORCH S B, HILL T M. Ectopic overexpression of wild-type and mutant hipA genes in Escherichia coli:effects on macromolecular synthesis and persister formation[J]. Journal of Bacteriology, 2006, 188(11):3826-3836. doi: 10.1128/JB.01740-05
|
[21]
|
FUNG D K, CHAN E W, CHIN M L. Delineation of a bacterial starvation stress response network which can mediate antibiotic tolerance development[J]. Antimicrobial Agents and Chemotherapy, 2010, 54(3):1082-1093. doi: 10.1128/AAC.01218-09
|
[22]
|
NGUYEN D, JOSHI-DATAR A, LEPINE F, et al. Active starvation response mediate antibiotic tolerance in biofilms and nutrient-limited bacteria[J]. Science, 2011, 334(6058):982-986. doi: 10.1126/science.1211037
|