Effect of Nitrogen Fertilizers on Pb and Cd Uptake of Rice Plants and Associated Food Safety Lssues
-
摘要: 为揭示不同氮肥形态对水稻吸收Pb和Cd能力的影响,通过盆栽试验,比较不同氮肥形态(酰胺态氮肥、铵态氮肥和硝态氮肥)对土壤理化性质、重金属活性及水稻对其吸收的影响,采用污染指数法和风险评价模型对不同氮肥处理下水稻重金属的污染程度及对居民健康带来的风险进行评价。结果表明:相对于酰胺态氮肥,施用铵态氮肥可使土壤pH值下降,施用硝态氮肥可使土壤pH值上升,铵态氮肥处理的土壤中Pb、Cd含量较硝态氮肥处理低;相对于酰胺态氮肥和硝态氮肥,铵态氮肥能够降低水稻植株各部位的Pb、Cd含量;风险评价结果表明,施用铵态氮肥可在一定程度上降低镉对居民健康带来的风险,实际生产中通过施用铵态氮肥可有效减少水稻对重金属的吸收。Abstract: Effect of nitrogen fertilizers on the uptakes of Pb and Cd by rice plants was studied. A pot experiment was conducted using amide, ammonium or nitrate nitrogen fertilizer to determine the responding soil properties, heavy metals bioavailability in rhizosphere soils, and metal uptakes by the plants. The heavy metal contaminations in different parts of a rice plant were evaluated by the pollution indices, and the food safety risk by an assessment model. The results showed that the pH in soil was lowered by the application of ammonium fertilizer, while raised by that of nitrate, as compared to amide. Among the three different nitrogen fertilizers, ammonium introduced significantly less Pb and Cd in the soil, as well as in the rice plants. The risk assessment on the rice did not raise a concern on Pb with ammonium but suggested its use to minimize Cd contamination.
-
Key words:
- nitrogen fertilizers /
- heavy metal /
- uptake capacity /
- risk assessment /
- rice
-
表 1 不同氮肥种类对水稻植株Pb和Cd含量的影响
Table 1. Pb and Cd concentration of rice plants as affected by different nitrogen form
氮肥形态 Pb含量/(mg·kg-1) Cd含量/(mg·kg-1) 根 茎叶 籽粒 根 茎叶 籽粒 CK 55.7±4.34b 4.40±0.588d 0.229±0.039d 0.738±0.083b 0.431±0.004de 0.265±0.014d AD+DCD 24.0±0.637c 3.89±0.549d 0.116±0.001d 0.674±0.020bc 0.373±0.001d 0.197±0.001e XD 73.2±0.559a 6.32±0.324d 0.374±0.061d 1.21±0.056a 0.471±0.019cd 0.336±0.006d 注:表中CK、AD和XD分别为酰胺态氮肥、铵态氮肥和硝态氮肥处理,DCD为双氰胺;不同小写字母表示各处理间差异显著(P < 0.05)。 -
[1] 李田玲.重金属污染对蔬菜基地的影响及防治对策[J].甘肃科技, 2012, 28(1):51-53. doi: 10.3969/j.issn.1000-0952.2012.01.019 [2] 崔玉静, 赵中秋, 刘文菊, 等.镉在土壤-植物-人体系统中迁移积累及其影响因子[J].生态学报, 2003, 23(10):2133-2143. doi: 10.3321/j.issn:1000-0933.2003.10.022 [3] 刘兰英, 涂杰峰, 邱伟兴, 等.福建闽西矿区周边稻米重金属含量及健康风险评估[J].西北农林科技大学学报(自然科学版), 2016, 44(12):99-106. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201612014 [4] 王艳红, 艾绍英, 李盟军, 等.氮肥对镉在土壤-芥菜系统中迁移转化的影响[J].中国生态农业学报, 2010, 18(3):649-653. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201003035 [5] 张磊, 宋凤斌, 崔良.化肥施用对土壤中重金属生物有效性的影响研究[J].中国生态农业学报, 2006, 14(4):122-125. http://d.old.wanfangdata.com.cn/Periodical/stnyyj200604032 [6] 张学洪, 蔡湘文, 李恺, 等.氮肥形态对李氏禾富集铬的影响及其生化分析[J].桂林理工大学学报, 2011, 31(3):399-403. doi: 10.3969/j.issn.1674-9057.2011.03.014 [7] WÅNGSTRAND H, ERIKSSON J, ÖBORN I. Cadmium concentration in winter wheat as affected by nitrogen fertilization[J]. European Journal of Agronomy, 2007, 26(3):209-214. doi: 10.1016/j.eja.2006.09.010 [8] LI X, ZIADI N, BÉLANGER G, et al. Cadmium accumulation in wheat grain as affected by mineral N fertilizer and soil characteristics[J]. Canadian Journal of Soil Science, 2011, 91(4):521-531. doi: 10.4141/cjss10061 [9] 张文, 谢良商, 吉清妹, 等.不同形态氮肥对辣椒产量与氮肥利用率的研究[J].长江蔬菜, 2011(8):55-58. doi: 10.3865/j.issn.1001-3547.2011.08.019 [10] 扶艳艳, 苗艳芳, 徐晓峰, 等.氮肥形态对冬小麦干物质积累与产量的影响[J].河南科技大学学报(自然科学版), 2013, 34(5):74-77. doi: 10.3969/j.issn.1672-6871.2013.05.017 [11] 樊卫国, 罗燕, 吴素芳, 等.氮肥形态及配比对铁核桃根际环境及幼苗生长的影响[J].园艺学报, 2014, 41(3):437-446. http://d.old.wanfangdata.com.cn/Periodical/yyxb201403004 [12] LIN Y L, CHAO Y Y, HUANG W D, et al. Effect of nitrogen deficiency on antioxidant status and Cd toxicity in rice seedlings[J]. Plant Growth Regulation, 2011, 64:263-273. doi: 10.1007/s10725-011-9567-0 [13] 孙志高, 刘景双.三江平原典型湿地土壤硝态氮和铵态氮垂直运移规律[J].水土保持学报, 2007, 21(6):25-30. doi: 10.3321/j.issn:1009-2242.2007.06.006 [14] 李良忠, 杨彦, 蔡慧敏, 等.太湖流域某农业活动区农田土壤重金属污染的风险评价[J].中国环境科学, 2013, 33(S1):60-65. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ2013S1012.htm [15] LI G, SUN G X, WILLIAMS P N, et al. Inorganic arsenic in Chinese food and its cancer risk[J]. Environment International, 2011, 37(7):1219-1225. doi: 10.1016/j.envint.2011.05.007 [16] USEPA. Exposure factors handbook[R]. Washington DC: Office of Research and Development, 1997: 104-126. [17] 段文佳.水产品中甲醛的暴露评估与风险管理研究[D].青岛: 中国海洋大学, 2011: 42-47. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1927909 [18] LUO J, QIN J, HE F, et al. Net fluxes of ammonium and nitrate in association with H+ fluxes in fine roots of Populus popularis[J]. Planta, 2013, 237(4):919-931. doi: 10.1007/s00425-012-1807-7 [19] 刘安辉, 赵鲁, 李旭军, 等.氮肥对镉污染土壤上小油菜生长及镉吸收特征的影响[J].中国土壤与肥料, 2014(2):77-81. http://d.old.wanfangdata.com.cn/Periodical/trfl201402016 [20] JÖNSSON E H L, ASP H. Effects of pH and nitrogen on cadmium uptake in potato[J]. Biologia Plantarum, 2013, 57(4):788-792. doi: 10.1007/s10535-013-0354-9 [21] MAO Q Q, GUAN M Y, LU K X, et al. Inhibition of nitrate transporter 1.1-controlled nitrate uptake reduces cadmium uptake in Arabidopsis[J]. Plant Physiology, 2014, 166(2):934-944. doi: 10.1104/pp.114.243766 [22] GUAN M Y, FAN S K, FANG X Z, et al. Modification of nitrate uptake pathway in plants affects the cadmium uptake by roots[J]. Plant Signaling & Behavior, 2015, 10(3):e990794. http://europepmc.org/abstract/MED/25830329 [23] ZACCHEO P, CRIPPA L, PASTA V D M. Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower[J]. Plant and Soil, 2006, 283(1):43-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b94f24853a4c34a8290bf70c4a6a9279 [24] KIM M, WOLT J. Probabilistic risk assessment of dietary cadmium in the South Korean population[J]. Food Additives and Contaminants, 2011, 28(1):62-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc0e45016c65fac25359886cccb0d90c [25] 苏倩怡.贝类中重金属镉的风险评估[D].青岛: 中国海洋大学, 2012: 19-26. http://cdmd.cnki.com.cn/Article/CDMD-10423-1012503974.htm