Cloning and Expression Analysis of OsPLATZ14 Promoter in Rice (Oryza sativa L.)
-
摘要:
目的 研究pOsPLATZ14的结构及时空表达模式,对深入研究OsPLATZ14基因功能、了解PLATZ转录因子在水稻生长发育进程的作用具有重要意义。 方法 利用BDGP、FPROM及Cister预测分析pOsPLATZ14大小,以水稻日本晴基因DNA为模板扩增pOsPLATZ14;应用PlantCARE分析序列中的顺序作用元件,构建pOsPLATZ14::GUS载体,转化水稻获得转基因植株;通过GUS组织化学染色法分析pOsPLATZ14在水稻中的时空表达特征。 结果 经PCR扩增获得pOsPLATZ14长度为1 899 bp,该区域含有光信号、逆境响应及激素应答等多种顺式作用元件。pOsPLATZ14驱动的GUS报告基因在水稻种子萌发期,苗期根、茎、叶,抽穗期的根、茎、叶、花穗、小花、叶夹角、茎结合部位、根茎过渡区及成熟期种子均有明显表达。 结论 pOsPLATZ14为组成型启动子,其下游调控基因OsPLATZ14可能在水稻生长发育过程中起重要作用。 -
关键词:
- 水稻 /
- PLATZ转录因子 /
- 启动子pOsPLATZ14 /
- 表达分析 /
- GUS活性
Abstract:Objective In order to further understand the function of OsPLATZ14 and the role of PLATZ transcription factor in rice growth and development, the structure and spatiotemporal expression pattern of pOsPLATZ14 were studied. Method The length of pOsPLATZ14 was predicted by using the online software of BDGP, FPROM, and Cister. The cis-acting regulatory elements of pOsPLATZ14 were analyzed based on the PlantCARE database. pOsPLATZ14 was isolated from the genomic DNA of Nipponbare, then pOsPLATZ14::GUS vector was constructed and applied for the rice callus transformation. Using GUS histochemical assay, the spatiotemporal expression characteristics of pOsPLATZ14 were revealed. Result The pOsPLATZ14 was determined to be 1 899 bp in length containing several cis-elements which were associated with the light signaling, stress and hormone response. The GUS reporter gene driven by the promoter was significantly expressed at the stages of seed germination, the seedling stage of roots, stems and leaves, in the heading period of roots, stems, leaves, flower spikes, florets, leaf angle, stem-stem junctions, root-stem junctions, as well as the seed maturation. Conclusion pOsPLATZ14 was the constitutive promoter and its downstream regulatory gene OsPLATZ14 might play an important role in the growth and development of rice. -
Key words:
- Rice /
- PLATZ transcription factor /
- promoter OsPLATZ14 /
- expression analysis /
- GUS activity
-
图 5 pOsPLATZ14::GUS转基因水稻的组织化学染色
注:a-b为根、c-d为茎、e为茎结合部、f为叶、g为叶夹角、h为雄蕊、i为雌蕊、j为种子、k为小花、l为根茎结合部、m为萌发期种子、n为花穗。
Figure 5. Histochemical staining of
pOsPLATZ14::GUS transgenic rice Note:a-b: root; c-d: stem; e: stem-stem junction; f: leaf; g: leaf angle; h: stamen; i: pistil; j: seed; k: floret; l: root-stem junction; m: germinating seed; n: flower spike.
表 1 OsPLATZ14基因启动子序列顺式作用元件
Table 1. The cis-acting elements in promoter sequence of OsPLATZ14
位点名称 Site name 信号序列 Signal Sequence 数量 Amount 位点功能 Function of Site TATA-box ATATAA/ TATA 2 主要顺式调控元件 Common cis-acting elements CAAT-box CAAT/CCAAT/ CAAAT 10 主要顺式调控元件 Common cis-acting elements 3-AF1 binding site TAAGAGAGGAA 1 光响应元件 Light response element GATA-motif GATAGGA 1 光响应元件 Light response element Sp1 GGGCGG 1 光响应元件 Light response element MRE AACCTAA 1 光响应元件 Light response element ARE AAACCA 2 缺氧胁迫响应元件 Anaerobic stress response element MBS CAACTG 1 干旱胁迫响应元件 Drought stress response element CAT-box GCCACT 1 分生组织特异性元件 Meristem expression element ABRE ACGTG 1 脱落酸响应元件 abscisic acid response element P-box CCTTTTG 1 赤霉素响应元件 Gibberellin response element TCA-element TCAGAAGAGG 1 水杨酸响应元件 Salicylic acid response element TGA-element AACGAC 1 生长素响应元件 Auxin response element TGACG-motif TGACG 1 茉莉酸响应元件 MeJA response element CCAAT-box CAACGG 1 MYB结合位点 MYB binding site AAGAA-motif GAAAGAA 3 功能未知元件 Function unknown component ERE ATTTCATA 1 功能未知元件 Function unknown component MYB CAACCA 1 功能未知元件 Function unknown component MYC CATTTG 3 功能未知元件 Function unknown component Myb CAACTG 1 功能未知元件 Function unknown component STRE AGGGG 2 功能未知元件 Function unknown component TATA TATAAAAT 1 功能未知元件 Function unknown component TCA TCATCTTCAT 1 功能未知元件 Function unknown component Unnamed_1 CGTGG 1 功能未知元件 Function unknown component Unnamed_4 CTCC 11 功能未知元件 Function unknown component WUN-motif AAATTACT 1 功能未知元件 Function unknown component as-1 TGACG 1 功能未知元件 Function unknown component -
[1] NAGANO Y, FURUHASHI H, INABA T, et al. A novel class of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences [J]. Nucleic Acids Research, 2001, 29: 4097−4105. doi: 10.1093/nar/29.20.4097 [2] WANG A H, HOU Q Q, SI L Z, et al. The PLATZ transcription factor GL6 affects grain length and number in rice [J]. Plant Physiology, 2019, 180(4): 2077−2090. doi: 10.1104/pp.18.01574 [3] WANG J C, JI C, LI Q, et al. Genome-wide analysis of the plant-specific PLATZ proteins in maize and identification of their general role in interaction with RNA polymerase Ⅲ complex [J]. BMC Plant Biology, 2018, 18: 221. doi: 10.1186/s12870-018-1443-x [4] XIONG Y Q, LIU T Y, TIAN C G, et al. Transcription Factors in Rice: A Genome-wide Comparative Analysis between Monocots and Eudicots [J]. Plant Molecular Biology, 2005, 59(1): 191−203. doi: 10.1007/s11103-005-6503-6 [5] SO H A, CHOI S J, CHUNG E, et al. Molecular characterization of stress-inducible PLATZ gene from soybean (Glycine max L.) [J]. Plant Omics Journal, 2015, 8: 479−484. [6] GONZÁLEZ -MORALES S I, CHÁVEZ -MONTES R A, HAYANO-KANASHIRO C, et al. Regulatory network analysis reveals novel regulators of seed desiccation tolerance inArabidopsis thaliana [J]. Proceedings of the National Academy of Sciences, 2016, 113: E5232−E5241. doi: 10.1073/pnas.1610985113 [7] LI Q, WANG J, YE J, et al. The Maize Imprinted Gene Floury3 Encodes a PLATZ Protein Required for tRNA and 5S rRNA Transcription through Interaction with RNA Polymerase Ⅲ [J]. Plant Cell, 2017, 29: 2661−2675. doi: 10.1105/tpc.17.00576 [8] KIM J H, KIM J, JUN S E, et al. ORESARA15, a PLATZ transcription factor, mediates leaf growth and senescence in Arabidopsis [J]. New Phytologist, 2018, 220: 609−623. doi: 10.1111/nph.15291 [9] 苏军, 胡昌泉, 翟红利, 等. 农杆菌介导籼稻明恢86高效稳定转化体系的建立 [J]. 福建农业学报, 2003, 18(4):209−213. doi: 10.3969/j.issn.1008-0384.2003.04.003SU J, HU C Q, ZHAI H L, et al. Establishment of a highly efficient and stable tranforming system mediated by Agrobacterium tumefacien in indica rice [J]. Fujian Journal of Agricultural Sciences, 2003, 18(4): 209−213.(in Chinese) doi: 10.3969/j.issn.1008-0384.2003.04.003 [10] 雒雅婧, 李杰, 张爽, 等. 植物启动子研究进展 [J]. 北方园艺, 2015(22):186−189.LUO Y J, LI J, ZHANG S, et al. Research Progress on Plant Promoter [J]. Northern Horticulture, 2015(22): 186−189.(in Chinese) [11] 杨鹏芳, 段国琴, 胡晓炜, 等. 高等植物启动子研究概述 [J]. 分子植物育种, 2018, 16(5):1482−1493.YANG P F, DUAN G Q, HU X W, et al. Overview of Higher Plant Promoters Research [J]. Molecular Plant Breeding, 2018, 16(5): 1482−1493.(in Chinese) [12] 马倩, 马宝月, 穆波, 等. 植物基因启动子的克隆及分析的研究进展 [J]. 中国农业文摘: 农业工程, 2018(3):23−29.MA Q, MA B Y, MU B, et al. Research Progress on Cloning and Analysis of Plant Gene Promoter [J]. Chinese Agricultural Digest: Agricultural Engineering, 2018(3): 23−29.(in Chinese) [13] 张利娜, 刘瑜, 林拥军. 水稻CDPK12基因启动子的表达模式及其逆境应答元件分析 [J]. 农业生物技术学报, 2015, 23(10):1261−1272.ZHANG L N, LIU Y, LIN Y J. Expression Pattern and Stress Response Elements Analysis of CDPK12 Gene Promoter in Rice (Oryza sativa ssp. japonica) [J]. Journal of Agricultural Biotechnology, 2015, 23(10): 1261−1272.(in Chinese) [14] 李伟, 吴超, 吕永刚, 等. 水稻金属硫蛋白基因(MT2bL)启动子的克隆与表达分析 [J]. 分子植物育种, 2017, 15(10):3856−3869.LI W, WU C, LV Y G, et al. Cloning and Expression Analysis of MT2bL Promoter in Rice (Oryza sativa L.) [J]. Molecular Plant Breeding, 2017, 15(10): 3856−3869.(in Chinese) [15] 牟少亮, 申磊, 石星辰, 等. 水稻OsERF96 应答病原菌的表达及启动子的功能分析 [J]. 植物遗传资源学报, 2017, 18(1):133−138.MOU S L, SHEN L, SHI X C, et al. Expression of OsERF96 Response to Pathogen and Functional Analysis of Its Promoter [J]. Journal of Plant Genetic Resources, 2017, 18(1): 133−138.(in Chinese) [16] 王庆国, 王莹莹, 李臻, 等. 水稻蛋白激酶基因启动子OsSRLp的分离及特性分析 [J]. 中国水稻科学, 2018, 32(4):335−341.WANG Q G, WANG Y Y, LI Z, et al. Isolation and Characteristic Analysis of Protein Kinase Promoter OsSRLp from Rice [J]. Chinese Journal of Rice Science, 2018, 32(4): 335−341.(in Chinese) [17] 唐跃辉, 包欣欣, 刘坤, 等. 水稻肽链释放因子OseRF1-3基因克隆、表达及启动子分析 [J]. 华北农学报, 2018, 33(1):1−6. doi: 10.7668/hbnxb.2018.01.001TANG Y H, BAO X X, LIU K, et al. Cloning, Expression and Promoter Analysis of Polypeptide Release Factor OseRF1-3 Gene from Rice [J]. Acta Agriculturae Boreali-Sinica, 2018, 33(1): 1−6.(in Chinese) doi: 10.7668/hbnxb.2018.01.001 [18] 朱永生, 肖开转, 王福祥, 等. 不同启动子驱动下GL6基因表达对水稻叶表皮毛发育的影响 [J]. 福建农业学报, 2019, 34(2):139−145.ZHU Y S, XIAO K Z, WANG F X, et al. Correlation Between GL6 Expression Driven by Varied Promoters and Development of Epidermal Hairs on Leaves of Rice Plant [J]. Fujian Journal of Agricultural Sciences, 2019, 34(2): 139−145.(in Chinese) [19] TUROWSKI T W, TOLLERVEY D. Transcription by RNA polymerase Ⅲ: insights into mechanism and regulation [J]. Biochemical Society Transactions, 2016, 44(5): 1367−1375. doi: 10.1042/BST20160062 [20] GUILLERMO A-P, EWAN P R, FABIENNEB, et al. Structural basis of RNA polymerase Ⅲ transcription initiation [J]. Nature, 2018, 553: 301−306. doi: 10.1038/nature25441