Effect of Pyrolysis Temperature and Time on Structure of Biochar Made from Discarded Mushroom Stems
-
摘要:
目的 生物炭的表面性质与其表面的官能团密切相关,探讨不同制备条件对不同材料废菌棒生物炭结构特征的影响可为废菌棒的资源化有效利用提供依据。 方法 以海鲜菇、秀珍菇、银耳的废菌棒为生物质原料,采用限氧裂解法在不同温度(400、500、600、700℃)和不同时间(1.5、2.0、2.5、3.0 h)下制备生物炭,采用傅里叶红外光谱法(FTIR)对不同废菌棒生物炭结构性质进行表征。 结果 随着炭化温度的升高和炭化时间的延长,3种菌棒生物炭蛋白质中C=O、C-N、纤维素中C-O-C、脂肪烃中-CH3和-CH2基团的相对含量都随之减少;苯环中的C-H官能团相对含量随之减少,C-C官能团相对含量随之增大,且在700℃,炭化3.0 h条件下达到最大。在相同制备条件下,海鲜菇菌棒生物炭含氧官能团吸收峰峰强最强,银耳菌棒生物炭最弱;秀珍菇菌棒生物炭苯环C-C吸收峰峰强最强,银耳菌棒生物炭最弱。 结论 随着炭化温度的升高和炭化时间的延长,生物炭中的蛋白质、多糖和脂肪酸等有机物质逐渐分解,烷基基团缺失,而芳香结构逐渐形成,在700℃,炭化3.0 h条件下生物炭结构最稳定。在3种菌棒生物炭中,海鲜菇菌棒生物炭对于重金属或有机污染物的吸附能力可能最强,秀珍菇菌棒生物炭施入土壤后固碳效果可能最好。 Abstract:Objective The surface property, which closely relates to the functionality, of biochar made from discarded mushroom stems under varied pyrolysis temperature and time was studied. Method Waste of edible mushrooms including Hypsizygus marmoreus , Pleurotus geesteranus , and Tremella fuciformis was processed under oxygen-limited pyrolysis at 400℃, 500℃, 600℃ or 700℃ for 1.5 h, 2.0 h, 2.5 h or 3.0 h. The structure property of the resulting biochar samples was analyzed using Fourier transform infrared spectroscopy (FTIR). Result The increasing pyrolysis temperature and time reduced the relative contents of C=O and C-N in the proteins, C-O-C in the celluloses, and C-H functional groups in the benzene rings of the raw material, while raised the relative contents of C-C functional groups in the benzene rings reaching a maximum when processed at 700℃ for 3.0 h. Among the 3 biochar samples obtained under same pyrolysis conditions, the maximum absorption by the oxygen functional groups of H. marmoreus biochar was the highest, and that of T. fuciformis the lowest; whereas, that by the C-C functional groups in the benzene rings of P. geesteranus biochar was the highest, and T. fuciformis biochar the lowest. Conclusion Increased pyrolysis temperature and time decomposed the organic substances such as proteins, polysaccharides, and fatty acids in the raw mushroom material, diminished the alkyls, and formed aromatics in the biochar. Processed under 700℃/3.0 h pyrolysis, the biochar attained a stable structure. As indicated by the analytical results, the H. marmoreus biochar was expected to be most effective among the 3 materials in removing heavy metals or organic pollutants, and the P. geesteranus biochar in carbon-sequestrating in soil. -
Key words:
- FTIR /
- discarded mushroom stem /
- biochar /
- pyrolysis temperature /
- pyrolysis time
-
表 1 不同炭化温度和时间下海鲜菇生物炭吸收峰的相对强度
Table 1. Relative intensity of absorption peak of H. marmoreus biochar made under various pyrolysis temperatures and times
温度
Temperature /℃时间
Time /h吸收峰相对强度 Absorption peak relative intensity 3 737 cm−1 3 433 cm−1 1 691 cm−1 1 635 cm−1 1 558 cm−1 1 458 cm−1 1 425 cm−1 1 388 cm−1 1 317 cm−1 1 040 cm−1 875 cm−1 785 cm−1 671 cm−1 400 1.5 0.027 0.047 — 0.013 0.052 0.025 0.023 0.024 0.031 0.028 — 0.023 0.038 2.0 0.020 0.011 — 0.110 0.056 0.033 0.033 0.031 0.052 0.025 — 0.021 0.005 2.5 0.024 0.051 — 0.170 0.061 0.041 0.038 0.037 0.067 0.041 — 0.031 0.038 3.0 0.012 0.051 — 0.179 0.063 0.041 0.038 0.037 0.063 0.041 — 0.031 0.038 500 1.5 0.012 0.014 — 0.011 — 0.043 — — — 0.014 0.007 0.004 0.024 2.0 0.022 0.052 — 0.108 — 0.086 — — 0.020 0.039 0.013 0.017 0.032 2.5 0.010 0.047 — 0.063 — 0.061 — — 0.023 0.031 0.008 0.008 0.024 3.0 0.007 0.025 — 0.026 — 0.031 — — 0.007 0.015 0.004 0.004 0.022 600 1.5 0.014 0.039 — 0.023 — 0.053 — — — 0.023 0.007 0.002 0.025 2.0 0.038 — — 0.023 — 0.052 — — — 0.008 0.006 0.002 0.029 2.5 0.026 0.031 — 0.031 — 0.061 — — — 0.025 0.008 0.005 0.028 3.0 0.005 0.026 — — — 0.099 — — — 0.029 0.018 0.004 0.004 700 1.5 0.017 0.017 0.009 0.013 — 0.037 — — — 0.013 0.005 0.002 0.028 2.0 0.075 0.047 0.010 0.020 — 0.061 — — — 0.025 0.010 0.002 0.025 2.5 0.021 0.046 0.014 0.024 — 0.059 — — — 0.019 0.008 0.002 0.028 3.0 0.038 0.048 0.023 0.031 — 0.130 — — — 0.047 0.020 0.005 0.025 表 2 不同炭化温度和时间下秀珍菇生物炭吸收峰的相对强度
Table 2. Relative intensity of absorption peak of P. geesteranus biochar made under various pyrolysis temperatures and times
温度
Temperature /℃时间
Time /h吸收峰相对强度 Absorption peak relative intensity 3 743 cm−1 3 435 cm−1 1 691 cm−1 1 635 cm−1 1 547 cm−1 1 433 cm−1 1 319 cm−1 1 110 cm−1 1 051 cm−1 875 cm−1 786 cm−1 673 cm−1 472 cm−1 400 1.5 0.017 0.051 — 0.089 — 0.070 0.037 — 0.016 0.004 0.012 0.008 0.004 2.0 0.040 0.034 — 0.112 — 0.100 0.053 — 0.025 0.014 0.015 — — 2.5 0.011 0.048 — 0.154 — 0.069 0.060 — 0.033 0.006 0.019 0.100 0.009 3.0 0.058 0.028 — 0.125 — 0.150 0.041 — 0.027 0.033 0.011 0.009 0.009 500 1.5 0.007 0.048 — 0.024 — 0.021 — 0.100 0.010 0.002 0.003 0.020 0.004 2.0 0.018 0.039 — 0.026 — 0.087 0.016 0.015 0.019 0.010 0.005 0.003 0.004 2.5 0.021 0.039 — 0.066 — 0.089 0.027 0.032 0.047 0.006 0.007 0.005 0.015 3.0 0.004 0.060 — 0.070 — 0.070 0.010 0.070 0.106 0.012 0.009 0.012 0.034 600 1.5 0.047 — 0.034 0.027 0.063 0.071 — — 0.006 0.010 0.001 0.014 0.003 2.0 0.051 0.015 0.040 0.040 0.068 0.071 — — 0.012 0.012 0.001 0.016 0.004 2.5 0.019 0.031 0.023 0.000 0.038 0.052 — — 0.029 0.008 0.001 0.005 0.007 3.0 0.190 0.064 0.001 0.054 0.052 0.099 — — 0.057 0.014 0.003 0.004 0.015 700 1.5 0.025 0.059 0.020 0.032 0.040 0.070 — — 0.037 0.012 0.003 0.004 0.01 2.0 0.013 0.041 0.005 0.030 0.032 0.081 — — 0.036 0.012 0.002 0.005 0.008 2.5 0.006 0.032 0.003 0.017 0.007 0.079 — — 0.030 0.014 0.001 0.001 0.015 3.0 0.016 0.063 0.002 0.032 — 0.230 — — 0.066 0.030 0.004 0.001 0.150 表 3 不同炭化温度和时间下银耳生物炭吸收峰的相对强度
Table 3. Relative intensity of absorption peak of T . fuciformis biochar made under various pyrolysis temperatures and times
温度
Temperature /℃时间
Time /h吸收峰相对强度 Absorption peak relative intensity 3 737 cm−1 3 617 cm−1 3 433 cm−1 1 741 cm−1 1 691 cm−1 1 643 cm−1 1 540 cm−1 1 520 cm−1 1 460 cm−1 1 420 cm−1 1 100 cm−1 669 cm−1 598 cm−1 400 1.5 0.034 0.019 0.011 — 0.047 0.047 0.060 — 0.035 — 0.012 0.009 0.008 2.0 0.039 0.021 0.019 — 0.074 0.078 0.088 — 0.054 — 0.028 0.006 0.008 2.5 0.029 0.016 0.013 — 0.043 0.044 0.054 — 0.029 — 0.013 0.008 0.006 3.0 0.045 0.023 0.005 — 0.052 0.052 0.070 — 0.036 — 0.014 0.012 0.007 500 1.5 0.043 0.021 0.016 — 0.067 0.072 0.089 0.083 0.049 0.041 0.024 0.005 0.009 2.0 0.052 0.027 0.015 — 0.060 0.061 0.081 0.081 0.040 0.030 0.013 0.004 0.004 2.5 0.031 0.016 0.016 — 0.042 0.053 0.077 0.071 0.047 0.045 0.030 0.009 0.009 3.0 0.037 0.018 0.018 — 0.060 0.064 0.073 0.070 0.043 0.040 0.027 0.011 0.009 600 1.5 0.021 0.008 0.003 0.006 0.016 0.017 0.029 0.028 0.012 0.010 0.010 0.014 0.007 2.0 0.039 0.018 0.001 0.015 0.027 0.023 0.045 0.047 0.019 0.013 0.007 0.012 0.006 2.5 0.042 0.019 0.003 0.020 0.041 0.040 0.060 0.060 0.029 0.021 0.012 0.006 0.007 3.0 0.045 0.024 0.007 0.018 0.032 0.028 0.049 0.052 0.023 0.016 0.010 0.011 0.007 700 1.5 0.054 0.027 0.006 0.023 0.037 0.031 0.059 0.061 0.029 0.020 0.012 0.006 0.008 2.0 0.046 0.025 0.004 0.022 0.034 0.027 0.058 0.027 0.027 0.018 0.012 0.011 0.006 2.5 0.043 0.022 0.007 0.019 0.030 0.025 0.051 0.050 0.023 0.015 0.011 0.013 0.007 3.0 0.023 0.012 0.010 0.005 0.011 0.010 0.027 0.029 0.013 0.010 0.014 0.021 0.020 -
[1] 赵启光, 王尚堃, 王亮, 等. 利用平菇菌糠栽培鸡腿菇培养料配方试验研究 [J]. 北方园艺, 2007(2):167−168. doi: 10.3969/j.issn.1001-0009.2007.02.077ZHAO Q G, WANG S K, WANG L, et al. Study on the formulation of culture materials of coprinus comatus using watse of Pleurotus [J]. Northern Horticulture, 2007(2): 167−168.(in Chinese) doi: 10.3969/j.issn.1001-0009.2007.02.077 [2] 孟楠, 李亚洁, 李学军, 等. 柞枝废菌棒有机肥及在君子兰栽培上的应用 [J]. 北方园艺, 2015(15):61−63.MENG N, LI Y J, LI X J, et al. Application of organic ferilizer made from waste fungus stick of tussah branches on potted Clivia miniata Culture [J]. Northern Horticultucre, 2015(15): 61−63.(in Chinese) [3] ANTAL M J, GRNLI M. The Art, Science and Technology of Charcoal Production [J]. Industrial & Engineering Chemistry Research, 2003, 42(8): 1619−1640. [4] 关连珠, 周景景, 张昀, 等. 不同来源生物炭对砷在土壤中吸附与解吸的影响 [J]. 应用生态学报, 2013, 24(10):2941−2946.GUAN L Z, ZHOU J J, ZHANG Y, et al. Effects of biochars produced from different sources on arsenic adsorption and desorption in soil [J]. Chinese Journal of Applied Ecology, 2013, 24(10): 2941−2946.(in Chinese) [5] BALWANT S, BHUPINDERPAL S, ANNETTEL C. Characterisation and evaluation of biochars for their application as a soil amendment [J]. Soil Research, 2010, 48(7): 516−525. doi: 10.1071/SR10058 [6] PENG X, YE L L, WANG C H, et al. Temperature and duration dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China [J]. Soil and Tillage Research, 2011, 112(2): 159−166. doi: 10.1016/j.still.2011.01.002 [7] REHRAH D, REDDY M R, NOVAK J M, et al. Production and characterization of biochars from agricultural by-products for use in soil quality enhancement [J]. Journal of Analytical and Applied Pyrolysis, 2014, 108: 301−309. doi: 10.1016/j.jaap.2014.03.008 [8] WANG C Y, ANDERSAN C, WANG T, et al. The chemical composition of native organic matter influences the response of bacterial community to input of biochar and fresh plant material [J]. Plant and Soil, 2015, 395(1-2): 87−104. doi: 10.1007/s11104-015-2621-3 [9] GAUNT J L, LEHMANN J. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production [J]. Environmental Science & Technology, 2008, 42(11): 4152−4158. [10] MARRIS E. Black is the new green [J]. Nature, 2006, 442(7103): 624−626. doi: 10.1038/442624a [11] SPOKAS K A. Review of the stability of biochar in soils: predictability of O:C molar ratios [J]. Carbon Management, 2010, 1(1-2): 289−303. [12] LI X M, SHEN Q R, ZHANG D Q, et al. Functional groups determine biochar properties (pH and EC) as studied by two-dimensional 13C NMR correlation spectroscopy [J]. PLoS One, 2013, 8(6): e65949. doi: 10.1371/journal.pone.0065949 [13] LORENZ K, LAL R. Biochar application to soil for climate change mitigation by soil organic carbon sequestration [J]. Journal of Plant Nutrition and Soil Science, 2014, 177(5): 651−670. doi: 10.1002/jpln.201400058 [14] MAO J D, JOHNSON R L, LEHMANN J, et al. Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration [J]. Environmental Science & Technology, 2012, 46(17): 9571−9576. [15] 郑庆福, 王永和, 孙月光, 等. 不同物料和炭化方式制备生物炭结构性质的FTIR研究 [J]. 光谱学与光谱分析, 2014, 34(4):962−966. doi: 10.3964/j.issn.1000-0593(2014)04-0962-05ZHENG Q F, WANG Y H, SUN Y G, et al. Study on structural properties of biochar under different materials and carbonized by FTIR [J]. Spectroscopy and Spectral Analysis, 2014, 34(4): 962−966.(in Chinese) doi: 10.3964/j.issn.1000-0593(2014)04-0962-05 [16] 张杰, 黄一平. 傅立叶变换红外光谱法在高聚物研究中的应用 [J]. 广东化工, 2006, 33(2):56−57. doi: 10.3969/j.issn.1007-1865.2006.02.021ZHANG J, HUANG Y P. Applyment in the study of high polymer with fourier transform infrared spectroscopy [J]. GuangDong Chemical Industry, 2006, 33(2): 56−57.(in Chinese) doi: 10.3969/j.issn.1007-1865.2006.02.021 [17] 简敏菲, 高凯芳, 余厚平. 不同裂解温度对水稻秸秆制备生物炭及其特性的影响 [J]. 环境科学学报, 2016, 36(5):1757−1765.JIAN M F, GAO K F, YU H P. Effects of different pyrolysis temperatures on the preparation and characteristics of bio-char from rice straw [J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1757−1765.(in Chinese) [18] 徐佳, 刘荣厚. 不同慢速热裂解工艺条件下棉花秸秆生物炭的理化特性分析 [J]. 上海交通大学学报(农业科学版), 2017, 35(2):19−24.XU J, LIU R H. Physicochemical properties ofcotton stalk biochar under different slow pyrolysis conditions [J]. Journal of Shanghai Jiaotong University(Agricultural Science), 2017, 35(2): 19−24.(in Chinese) [19] 潘萌娇, 孙姣, 贺强, 等. 热解终温和加热速率对棉杆热解生物炭的影响研究 [J]. 河北工业大学学报, 2014, 43(5):60−66.PAN M J, SUN J, HE Q, et al. The effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of cotton stalk [J]. Journal of Hebei University of Technology, 2014, 43(5): 60−66.(in Chinese) [20] 徐义亮. 生物炭的制备热动力学特性及其对镉的吸附性能和机理[D]. 杭州: 浙江大学, 2013.XU Y L. Thermodynamic properties of biochar preparation and sorption characteristics and mechanisms of cadmium onto biochars [D]. Hangzhou: Zhejiang University, 2013. (in Chinese) [21] 刘刚, 刘剑虹, 杨爱明, 等. 食用菌的傅里叶变换红外光谱鉴别 [J]. 光谱学与光谱分析, 2004, 24(8):941−945. doi: 10.3321/j.issn:1000-0593.2004.08.013LIU G, LIU J H, YANG A M, et al. Identification of edible mushrooms by fourier transform infrared spectroscopy [J]. Spectroscopy and Spectral Analysis, 2004, 24(8): 941−945.(in Chinese) doi: 10.3321/j.issn:1000-0593.2004.08.013 [22] 任爱玲, 王启山, 郭斌. 污泥活性炭的结构特征及表面分形分析 [J]. 化学学报, 2006, 64(10):1068−1072. doi: 10.3321/j.issn:0567-7351.2006.10.017REN A L, WANG Q S, GUO B. Structure characterization and Surface Fractal Analysis of Sludge Activated Carbon [J]. Acta Chimica Sinica, 2006, 64(10): 1068−1072.(in Chinese) doi: 10.3321/j.issn:0567-7351.2006.10.017 [23] CHOONG Y K, XU C H, LAN J, et al. Identification of geographical origin of Lignosus samples using Fourier transform infrared and two-dimensional infrared correlation spectroscopy [J]. Journal of Molecular Structure, 2014, 1069: 188−195. doi: 10.1016/j.molstruc.2014.04.001 [24] CHOONG Y K, SUN S Q, ZHOU Q, et al. Determination of storage stability of the crude extracts of Ganoderma lucidum using FTIR and 2D-IR spectroscopy [J]. Vibrational Spectroscopy, 2011, 57(1): 87−96. [25] 郭平, 王观竹, 许梦, 等. 不同热解温度下生物质废弃物制备的生物质炭组成及结构特征 [J]. 吉林大学学报(理学版), 2014, 52(4):855−860.GUO P, WANG G Z, XU M, et al. Structure and composition characteristics of biochars derived from biomass wastes at different pyrolysis temperatures [J]. Journal of Jilin University (Science Edition), 2014, 52(4): 855−860.(in Chinese) [26] 王金主, 王元秀, 李峰, 等. 玉米秸秆中纤维素、半纤维素和木质素的测定 [J]. 山东食品发酵, 2010(3):44−47.WANG J Z, WANG Y X, LI F, et al. Determination of cellulose, hemicellulose and lignin in corn stalk [J]. Shandong Food Ferment, 2010(3): 44−47.(in Chinese) [27] WANG Y, HU Y T, ZHAO X, et al. Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times [J]. Energy & Fuels, 2013, 27(10): 5890−5899. doi: 10.1021/ef400972z [28] FUERTES A B, ARBESTAIN M C, SEVILLA M, et al. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonization of corn stover [J]. Soil Research, 2010, 48(7): 618−626. doi: 10.1071/SR10010 [29] ZHU Y, TAN T L. Penalized discriminant analysis for the detection of wild-grown and cultivated Ganoderma lucidum using Fourier transform infrared spectroscopy [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 159: 68−77. doi: 10.1016/j.saa.2016.01.018 [30] 孙素琴, 周琴, 陈建波. 中药红外光谱分析与鉴定[M]. 北京: 化学工业出版社, 2010. [31] 高凯芳, 简敏菲, 余厚平, 等. 裂解温度对稻秆与稻壳制备生物炭表面官能团的影响 [J]. 环境化学, 2016, 35(8):1663−1669. doi: 10.7524/j.issn.0254-6108.2016.08.2016010607GAO K F, JIAN M F, YU H P, et al. Effects of pyrolysis temperatures on the biochars and its surface functional groups made from rice straw and rice husk [J]. Environmental Chemistry, 2016, 35(8): 1663−1669.(in Chinese) doi: 10.7524/j.issn.0254-6108.2016.08.2016010607 [32] KOGKAKI E A, SOFOULIS M, NATSKOULIS P, et al. Differentiation and identification of grape-associated black aspergilli using Fourier transform infrared (FT-IR) spectroscopic analysis of mycelia [J]. International Journal of Food Microbiology, 2017, 259: 22−28. doi: 10.1016/j.ijfoodmicro.2017.07.020 [33] 朱庆祥. 生物炭对Pb、Cd污染土壤的修复试验研究[D]. 重庆: 重庆大学, 2011.ZHU Q X. Experimental study on lead and cadmium contaminated soil remediation with biochar[D]. Chongqing: Chongqing University, 2011. (in Chinese) [34] 林珈羽, 张越, 刘沅, 等. 不同原料和炭化温度下制备的生物炭结构及性质 [J]. 环境工程学报, 2016, 10(6):3200−3206. doi: 10.12030/j.cjee.201501107LIN J Y, ZHANG Y, LIU Y, et al. Structure and properties of biochar under different materials and carbonization temperatures [J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 3200−3206.(in Chinese) doi: 10.12030/j.cjee.201501107 [35] 鞠文亮, 荆延德. 陈化处理对棉花秸秆生物炭理化性质的影响 [J]. 环境科学学报, 2017, 37(10):3853−3861.JU W L, JING Y D. Effect of aging treatment on physicochemical characteristics of cotton straw biochar [J]. Acta Scientiae Circumstantiae, 2017, 37(10): 3853−3861.(in Chinese) [36] GLASER B, BALASHOV E, HAUMAIER L, et al. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region [J]. Organic Geochemistry, 2000, 31(7-8): 669−678. doi: 10.1016/S0146-6380(00)00044-9