Effects of Cadmium Stress on Physiology and Enrichment of Tagetes Seedlings
-
摘要:
目的 研究不同质量浓度(0、0.3、3、20、60、120、180、240 mg·L−1)镉胁迫下,万寿菊属植物幼苗(万寿菊、孔雀草)的生理指标与富集指标,比较可溶性蛋白、丙二醛、过氧化物酶、超氧化物歧化酶与镉吸收量,明确不同质量浓度镉胁迫下万寿菊属植物幼苗生理调节机制与富集能力。 方法 通过水培试验,采用镉胁迫处理幼苗,测定可溶性蛋白、丙二醛、过氧化物酶、超氧化物歧化酶与镉吸收量,研究镉胁迫对万寿菊、孔雀草幼苗的生理指标与幼苗富集效果的影响。 结果 随着Cd胁迫质量浓度的增加,万寿菊幼苗的可溶性蛋白质含量逐渐降低,丙二醛含量随Cd质量浓度增加先降低后升高再降低,过氧化物酶活性逐渐升高,超氧化物歧化酶活性先降低后升高再降低;孔雀草幼苗可溶性蛋白质含量逐渐降低,丙二醛含量先下降后上升再下降后又上升,过氧化物酶先上升后下降,超氧化物歧化酶含量先上升后下降再上升后下降;万寿菊、孔雀草幼苗对镉的吸收量随Cd胁迫质量浓度的增加积累能力逐渐增强,万寿菊幼苗与孔雀草幼苗在180 mg·L−1Cd胁迫时,幼苗内Cd含量分别达到440.40、478.23 mg·kg−1。 结论 中、低量的Cd胁迫(0.3–120 mg·L−1)对万寿菊、孔雀草幼苗生理影响小,自身可以调节,高量的Cd胁迫(180、240 mg·L−1)产生破坏作用,影响较大;万寿菊、孔雀草幼苗富集量随Cd胁迫质量浓度升高而升高,直到幼苗不萌发;万寿菊幼苗抵抗Cd胁迫生理机制过氧化物酶起主导作用,孔雀草幼苗抵抗Cd胁迫生理机制超氧化物歧化酶起主导作用;采用万寿菊、孔雀草种子进行植物修复有较大应用前景。 Abstract:Objective Physiology of and heavy-metal accumulation in marigold ( Tagetes erecta L.) and peafowl ( T. patula L.) seedlings under cadmium (Cd) stress were studied. Method In a hydroponic test, the seedlings were treated with a Cd concentration of 0, 0.3, 3, 20, 60, 120, 180 or 240 mg·L−1 in the medium. Soluble protein, malondialdehyde, peroxidase, superoxide dismutase, and Cd of the plants were monitored. Result There were apparent effects on the physiological regulatory mechanisms and metal-ion accumulation in the seedlings by the imposed Cd stress at varying concentrations. On marigold, increasing Cd caused the soluble protein in the seedlings to decline constantly, the malondialdehyde to decrease initially but raise then decrease again, the peroxidase activity to gradually increase, and the superoxide dismutase to decrease at first then increase followed by another decline. On peafowl, the increased stress induced a continuous decline on soluble protein, a down-up-down-and-up trend on malondialdehyde, a rise-then-fall on peroxidase, and a roller coaster up-down-up-and-down effect on superoxide dismutase in the seedlings. Cd stress directly raised the metal-uptakes in marigold as well as peafowl. At 180 mg Cd·L−1, the marigold seedlings attained a Cd content of 440.40 mg·kg−1 and the peafowl 478.23 mg·kg−1. Conclusion At medium and low Cd concentrations (e.g., 0.3−120 mg·L−1), little physiological impact was evident on either marigold or peafowl, as the plants could apparently regulate to tolerate the stress. However, under a high Cd stress (e.g., 180 or 240 mg·L−1), significant harms resulted on the plants. Cd would continue to accumulate in the seedlings till the heavy metal concentration in the medium reached the level when the seeds simply failed to germinate. For marigold, peroxidase played a leading role in the Cd stress resistance, whereas, superoxide dismutase did for peafowl. It appeared that Tagetes seeds could be useful for studying phytoremediation. -
Key words:
- Tagetes /
- Cd stress /
- physiological indices /
- Cd accumulation
-
图 1 不同质量浓度Cd处理万寿菊属幼苗Cd含量
注:不同大写字母表示差异极显著(P<0.01),不同小写字母表示差异显著(P<0.05)。差异性分析为同一种植物间的差异性比较。
Figure 1. Cd content in marigold seedlings under stress at various Cd concentrations
Note: Different capital letters indicate extremely significant differences ( P <0.01). Different lowercase letters indicate significant difference ( P <0.05). Differences are between plants of the same specie.
表 1 镉胁迫对万寿菊幼苗生理指标的影响
Table 1. Effect of Cd stress on physiological indices of marigold seedlings
Cd处理
Cd Treatment可溶性蛋白
Soluable Protein/(mg·g−1)丙二醛
MDA/(μmol·g−1 )过氧化物酶
POD/(U·g−1)
超氧化物歧化酶
SOD/(U·g−1)A1 2.20±0.02 Aa 0.064 5±0.002 5 BCb 956.67±10.26 Gg 539.43±36.78 Aa A2 2.14±0.01 ABab 0.068 3±0.003 1 Bb 1 030.00±16.37 Ff 407.62±19.71 Bb A3 2.05±0.01 BCbc 0.032 9±0.001 7 Dd 1 528.67±10.26 Ee 247.62±13.78 CDcd A4 1.95±0.01 Cc 0.090 6±0.002 1 Aa 1 801.33±4.62 Dd 366.48±13.97 Bb A5 1.96±0.01 Cc 0.089 8±0.002 7 Aa 1 886.00±14.00 Cc 290.29±18.29 Cc A6 1.77±0.01 Dd 0.060 1±0.003 8 Cc 2 574.00±9.17 Bb 256.00±12.73 CDcd A7 1.52±0.17 Ee 0.059 2±0.001 5 Cc 4 062.67±34.43 Aa 225.52±45.96 Dd A8 — — — — 注:表中数据为平均值±标准差;同列数据后不同大写字母表示差异极显著(P<0.01),不同小写字母表示差异显著(P<0.05)。“—”表示不萌发。表2同。
Note: The data in the table is the mean ± standard deviation; Different capital letters after the same data indicate that the difference is extremely significant (P<0.01), and lowercase letters indicate significant differences (P<0.05). "—" means not germination. The same as Table 2.表 2 镉胁迫对孔雀草幼苗生理指标的影响
Table 2. Effect of Cd stress on physiological indices of peafowl seedlings
Cd处理
Cd Treatment可溶性蛋白
Soluable Protein/(mg·g−1)丙二醛
MDA/(μmol·g−1)
过氧化物酶
POD/(U·g−1)
超氧化物歧化酶
SOD/(U·g−1)
B1 2.02±0.03 Bb 0.052 9±0.000 7 Bb 1 299.33±14.05 Ff 526.48±25.69 Cc B2 2.24±0.01 Aa 0.038 0±0.001 6 CDcd 2 147.33±52.17 Bb 627.05±27.46 Bb B3 1.65±0.02 Cc 0.044 7±0.000 2 BCbc 2 360.00±40.15 Aa 504.38±27.56 Cc B4 1.50±0.03 Dd 0.031 5±0.000 3 Dd 1 915.33±11.02 Cc 723.81±48.51 Aa B5 1.46±0.02 Dd 0.042 9±0.005 0 BCDc 1 794.67±4.16 Dd 495.23±21.60 Cc B6 1.37±0.06 Ee 0.042 5±0.001 9 BCDc 1 423.33±17.01 Ee 486.10±25.18 CDc B7 1.29±0.02 Ff 0.067 9±0.012 8 Aa 1 414.67±34.43 Ee 427.43±13.71 Dd B8 — — — — -
[1] 杨梅, 李晓燕. 贵阳市冬季地表灰尘重金属含量动态变化及原因探析 [J]. 环境科学学报, 2014, 34(8):2070−2076.YANG M, LI X Y. Dynamic changes and cause analysis of heavy metals in street dust in Guiyang City, China [J]. Acta Scientiae Circumstantiae, 2014, 34(8): 2070−2076.(in Chinese) [2] 贾文娟. 镉胁迫对盐芥种子萌发、幼苗生长及抗氧化酶的影响[D]. 济南: 山东师范大学, 2012.JIA W J. Effects of cadmium on seed germination, seeding growth and antioxidant system of Thellungiella hallophila[D]. Jinan: Shandong Normal University, 2012.(in Chinese)] [3] 赵淑玲, 王瀚, 赵桂芳, 等. 重金属铅对豇豆种子的萌发及幼苗生长的影响 [J]. 种子, 2016, 35(5):99−101.ZHAO S L, WANG H, ZHAO G F, et al. Effect of Pb2+ stress on Vigna unguiculata seeds germination and seedlings growth [J]. Seed, 2016, 35(5): 99−101.(in Chinese) [4] 仲灿, 葛晓敏, 倪云, 等. 植物对土壤Cd、Pb污染的修复与抗性机理研究进展 [J]. 世界林业研究, 2017, 30(1):37−43.ZHONG C, GE X M, NI Y, et al. Research progress of phytore-mediation technology and resistance mechanism of plant in soil polluted by Cd or Pb [J]. World Forestry Research, 2017, 30(1): 37−43.(in Chinese) [5] 周晓星. 柳属植物对重金属镉胁迫的生长与生理响应[D]. 北京: 中国林业科学研究院, 2012.ZHOU X X. Growth and physiological responses of Salix to cadmium stress[D]. Beijing: Chinese Academy of Forestry Sciences, 2012.(in Chinese) [6] 陈镔, 谭淑端, 董方旭, 等. 重金属对植物的毒害及植物对其毒害的解毒机制 [J]. 江苏农业科学, 2019, 47(4):34−38.CHEN B, TAN S T, DONG F X, et al. Toxic effects of heavy metals on plants and detoxification mechanism of plants [J]. Jiangsu Agricultural Sciences, 2019, 47(4): 34−38.(in Chinese) [7] 王波, 黄攀, 吕德雅, 等. 铅、镉对南荻种子萌发和幼苗生长的影响 [J]. 生态环境学报, 2018, 27(9):1768−1773.WANG B, HUANG P, LÜ D Y, et al. Effects of Pb and Cd on the seed germination and seedling growth of Triarrhena lutarioriparia [J]. Ecology and Environmental Sciences, 2018, 27(9): 1768−1773.(in Chinese) [8] 彭昌琴, 陈兴银, 杨鹏, 等. 镉胁迫对尾穗苋种子萌发及幼苗生理特性的影响 [J]. 种子, 2018, 37(7):43−48.PENG C Q, CHEN X Y, YANG P, et al. Effects of cadmium stress on seed germination of Amaranthus caudatus and physiological characteristics of seedlings [J]. Seed, 2018, 37(7): 43−48.(in Chinese) [9] 韦新东, 黄一格, 王颖. 镉、铅胁迫对白三叶种子萌发及幼苗生长的影响 [J]. 北方园艺, 2016(2):71−74.WEI X D, HUANG Y G, WANG Y. Effect of heavy metal cadmium and lead stress on seed germination and seedlings growth of the Trifolium repens [J]. Northern Horticulture, 2016(2): 71−74.(in Chinese) [10] 张云霞, 宋波, 宾娟, 等. 超富集植物藿香蓟(Ageratum conyzoides L.)对镉污染农田的修复潜力 [J]. 环境科学, 2019, 40(5):2453−2459.ZHANG Y X, SONG B, BIN J, et al. Remediation potential of Ageratum conyzoides L. on cadmium contaminated farmland [J]. Environmental Science, 2019, 40(5): 2453−2459.(in Chinese) [11] 熊愈辉, 杨肖娥, 叶正钱, 等. 东南景天对镉、铅的生长反应与积累特性比较 [J]. 西北农林科技大学学报(自然科学版), 2004, 32(6):101−106.XIONG Y H, YANG X E, YE Z Q, et al. Comparing the characteristics of growth response and accumulation of cadmium and lead by Sedum alfredii Hance [J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 2004, 32(6): 101−106.(in Chinese) [12] 田治国, 王飞, 张文娥, 等. 万寿菊属不同品种初花期抗旱特性分析 [J]. 西北植物学报, 2011, 31(7):1390−1399.TIAN Z G, WANG F, ZHANG W, et al. Analysis of drought tolerance of marigold cultivars at early flowering stage [J]. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(7): 1390−1399.(in Chinese) [13] 黄玉梅, 张杨雪, 刘庆林, 等. 孔雀草水浸提液对4种园林植物化感作用的研究 [J]. 草业学报, 2015, 24(6):150−158. doi: 10.11686/cyxb2014496HUANG Y M, ZHANG Y X, LIU Q L, et al. Research on allelopathy of aqueous extract from Tagetes patula to four garden plants [J]. Acta Prataculturae Sinica, 2015, 24(6): 150−158.(in Chinese) doi: 10.11686/cyxb2014496 [14] 孙园园. 耐镉植物抗性及富集规律的研究[D]. 贵阳: 贵州大学, 2015.SUN Y Y. Study on resistance and accumulation characteristics of cadmium tolerant plant[D]. Guiyang: Guizhou University, 2015.(in Chinese) [15] 严莲英, 范成五, 刘桂华, 等. 阿哈水库底泥基质中3种绿化植物的生长及Cd的富集特征 [J]. 草业学报, 2019, 28(4):203−212.YAN L Y, FAN C W, LIU G H, et al. Growth and Cd accumulation characteristics of three representative plant species in artificial soils incorporating sediment substrate of the Aha Reservoir [J]. Acta Prataculturae Sinica, 2019, 28(4): 203−212.(in Chinese) [16] 赵子刚, 曾丽, 唐克轩, 等. 色素万寿菊叶片再生体系的建立及优化 [J]. 园艺学报, 2010, 37(4):655−660.ZHAO Z G, ZENG L, TANG K X, et al. The establishment and optimization of leaves regeneration system of pigment marigold [J]. Acta Horticulturae Sinica, 2010, 37(4): 655−660.(in Chinese) [17] 张治安, 陈展宇. 植物生理学实验技术[M]. 长春: 吉林大学出版社, 2008: 100-180. [18] 孙赛初, 王焕校, 李启任. 水生维管束植物受镉污染后的生理变化及受害机制初探 [J]. 植物生理学报, 1985, 11(2):113−121.SUN S C, WANG H X, LI Q R. Preliminary studies on physiological changes and injury mechanism in aquatic vascular plants treated with cadmium [J]. Plant Physiology Journal, 1985, 11(2): 113−121.(in Chinese) [19] 杨红飞, 王友保, 李建龙. 铜、锌污染对水稻土中油菜(Brassica chinensis L.)生长的影响及累积效应研究 [J]. 生态环境学报, 2011, 20(10):1470−1477. doi: 10.3969/j.issn.1674-5906.2011.10.014YANG H F, WANG Y B, LI J L. Impacts of Cu and Zn pollution on rape(Brassica chinensis L.) growth and its accumulation effect of heavy metals in paddy soil [J]. Ecology and Environmental Sciences, 2011, 20(10): 1470−1477.(in Chinese) doi: 10.3969/j.issn.1674-5906.2011.10.014 [20] 王爱云, 钟国锋, 徐刚标, 等. 铬胁迫对芥菜型油菜生理特性和铬富集的影响 [J]. 环境科学, 2011, 32(6):1717−1725.WANG A Y, ZHONG G F, XU G B, et al. Effects of Cr(Ⅵ) stress on physiological characteristics of Brassica juncea and its Cr uptake [J]. Environmental Science, 2011, 32(6): 1717−1725.(in Chinese) [21] 刘俊祥, 孙振元, 韩蕾, 等. 草坪草对重金属胁迫响应的研究现状 [J]. 中国农学通报, 2009, 25(13):142−145.LIU J X, SUN Z Y, HAN L, et al. A review on responses of turfgrass to heavy metal stress [J]. Chinese Agricultural Science Bulletin, 2009, 25(13): 142−145.(in Chinese) [22] 刘柿良, 杨容孑, 马明东, 等. 土壤镉胁迫对龙葵(Solanum nigrum L.)幼苗生长及生理特性的影响 [J]. 农业环境科学学报, 2015, 34(2):240−247.LIU S L, YANG R J, MA M D, et al. Effects of Soil Cadmium on Growth and Physiological Characteristics of Solanum nigrum L. Plants [J]. Journal of Agro-Environment Science, 2015, 34(2): 240−247.(in Chinese) [23] 贾静, 王海芳, 马瑞. 土壤铅汞复合污染对紫花苜蓿生理指标的影响 [J]. 科学技术与工程, 2018, 18(13):318−322.JIA J, WANG H F, MA R. Effects of combined pollution of lead and mercury on physiological indexes of alfalfa [J]. Science Technology and Engineering, 2018, 18(13): 318−322.(in Chinese) [24] 徐旭, 孙振元, 潘远智, 等. 园林植物对重金属胁迫的响应研究现状 [J]. 世界林业研究, 2007, 20(6):36−41.XU X, SUN Z Y, PAN Y Z, et al. Review on responses of garden plants to heavy metal stress [J]. World Forestry Research, 2007, 20(6): 36−41.(in Chinese) [25] 刘周莉, 何兴元, 陈玮. 镉胁迫对金银花生理生态特征的影响 [J]. 应用生态学报, 2009, 20(1):40−44.LIU Z L, HE X Y, CHEN W. Effects of cadmium stress on the growth and physiological characteristics of Lonicera japonica [J]. Chinese Journal of Applied Ecology, 2009, 20(1): 40−44.(in Chinese) [26] 贾永霞, 张春梅, 方继宇, 等. 细叶百日草对镉的生长响应及富集特征研究 [J]. 核农学报, 2015, 29(8):1577−1582.JIA Y X, ZHANG C M, FANG J Y, et al. Effects of cadmium on growth response and accumulation characteristics of Zinnia angustifolia(Z. linearis) [J]. Journal of Nuclear Agricultural Sciences, 2015, 29(8): 1577−1582.(in Chinese) [27] 张银秋, 台培东, 李培军, 等. 青鲜素与谷胱甘肽对万寿菊镉积累的影响 [J]. 生态学杂志, 2010, 29(5):887−891.ZHANG Y Q, TAI P D, LI P J, et al. Effects of maleic hydrazide and glutathione on Cd accumulation in Tagetes erecta L [J]. Chinese Journal of Ecology, 2010, 29(5): 887−891.(in Chinese) [28] 刘威, 束文圣, 蓝崇钰. 宝山堇菜(Viola baoshanensis): 一种新的镉超富集植物 [J]. 科学通报, 2003, 48(19):2046−2049. doi: 10.3321/j.issn:0023-074X.2003.19.009LIU W, SHU W S, LAN C Y. Viola baoshanensis-a new cadmium-rich plant [J]. Chinese Science Bulletin, 2003, 48(19): 2046−2049.(in Chinese) doi: 10.3321/j.issn:0023-074X.2003.19.009