AFLP Molecular Markers-based Genetic Diversity Analysis on 90 Avocado Germplasms
-
摘要:
目的 本研究对采自中国云南德宏、保山、西双版纳、普洱、红河和缅甸克钦邦、掸邦地区共90份鳄梨种资资源进行遗传多样性分析,为其新品种选育和种质创新提供参考依据。 方法 采用CTAB法提取鳄梨叶片基因组DNA,利用扩增片段长度多态性分子标记技术,对90份种质资源的基因组DNA进行酶切、连接、预扩增、选择性扩增,电泳分离,银染显色。电泳结果得到“0,1”矩阵,使用POPGENE 32软件计算每对引物的多态性条带、多态性比率、有效等位基因数、遗传多样性指数等指标,同时使用NTSYSpc-2.11F计算种质间遗传相似系数,根据相似性系数进行UPGMA聚类分析和PCA主效应分析,对鳄梨种质资源进行分类。 结果 从24对AFLP引物组合中,筛选出8对扩增条带清晰、多态性高的引物组合,8对引物共扩增出1 165个条带,其中多态性条带有1 163个,多态位点百分率为99.83%;有效等位基因数(Ne)平均1.294 4个;Nei’s基因多样性指数(H)平均0.209 5;Shannon信息指数(I)平均0.353 0。根据遗传相似系数进行聚类分析,在遗传相似系数0.752处可划分为4个类群,第I类群有1份保山种质70号;第II类群有24份种质;第III类群有1份西双版纳种质59号;第IV类群有64份种质。在遗传相似系数0.763处可将第IV类群划分为3个亚群(A、B和C)。用PCA法对90份鳄梨种质AFLP标记结果进行主效应分析,显示了不同种质的分类位置,主效应分析结果与分子聚类结果基本一致,呈一定的地域性分布规律。 结论 90份种质资源的遗传多样性较为丰富,59号和70号相对特殊,在种质创新中应给予重点关注。 Abstract:Objective Genetic relationship of 90 avocado (Persea americana Mill.) germplasms collected from Dehong, Baoshan, Xishuangbanna, Puer, and Honghe in Yunnan, China and Shan and Kachin States of Burma was analyzed based on AFLP molecular markers for breeding reference and resource information. Method Genomic DNAs were extracted from the leaves of the avocado plants following the CTAB method. They were amplified using the sequence-related amplified polymorphism molecular markers to determine their genetic diversity and similarity. Separation of the amplified fragments was performed on 5% denaturing polyacrylamide gels stained with AgNO3 to obtain the “0,1” matrix. The number of polymorphic loci, percentage of polymorphic loci, effective number of alleles, and indices of genetic diversity were estimated by POPGENE version 32. The genetic similarity estimated by NTSYSpc-2.11F was used for UPGMA (unweighted pair group method analysis) and PCA (principal component analysis) to classify the avocado germplasms. Result Eight primers with strong polymorphism and high repeatability were screened from 24 AFLP primers generating a total of 1 165 bands. Of the bands, 1 163 (99.83%) showed polymorphism. On average, the number of effective alleles was 1.294 4; Nei's gene diversity (H), 0.209 5; and Shannon's information index (I), 0.353 0. At the genetic similarity index (GS) of 0.752, the germplasms were classified into 4 groups. A single avocado germplasm, No. 70, collected from Baoshan was placed in Group I. Group II had 22 germplasms; Group III, one germplasm, No. 59, from Xishuangbanna; and Group IV, the 64 remainders. The germplasms in Group IV were further divided into Subgroups A, B and C at GS of 0.763. A similar grouping result was obtained from the cluster analysis on the PCR data applied AFLP markers confirming these germplasms shared a high similarity within a same region. Conclusion The 90 collected avocado germplasms were found to be relatively high in genetic diversity. Among them, No. 59 and 70 stood out as two most unique varieties. -
Key words:
- Avocado (Persea americana Mill) /
- AFLP /
- genetic diversity
-
表 1 供试鳄梨种质资源信息
Table 1. Avocado germplasms studied
序号
Number种质编号
Germplasm code序号
Number种质编号
Germplasm code序号
Number种质编号
Germplasm code来源地:缅甸克钦邦八莫市
Origin: Bhamo, Kachin state,
Myanmar来源地:云南省普洱市孟连县
Origin: Menglian County, Pu'er City,
Yunnan Province62 EL0062 63 EL0063 64 EL0064 1 EL0001 32 EL0032 65 EL0065 2 EL0002 33 EL0033 来源地:云南省德保山市潞江坝
Origin: Lujiangba, Baoshan City,
Yunnan Province3 EL0003 34 EL0034 4 EL0004 35 EL0035 5 EL0005 36 EL0036 66 EL0066 6 EL0006 37 EL0037 67 EL0067 7 EL0007 38 EL0038 68 EL0068 8 EL0008 39 EL0039 69 EL0069 9 EL0009 40 EL0040 70 EL0070 10 EL0010 41 EL0041 来源地:云南省德宏州盈江县
Origin: Yingjiang County, Dehong Prefecture, Yunnan Province11 EL0011 42 EL0042 12 EL0012 43 EL0043 13 EL0013 71 EL0071 来源地:缅甸掸邦南坎
Origin: Namhkam, Shan State,
Myanmar来源地:云南省热带作物科学研究所
Origin: Yunnan Institute of
Tropical Crops72 EL0072 73 EL0073 74 EL0074 14 EL0014 44 EL0044 75 EL0075 15 EL0015 45 EL0045 76 EL0076 16 EL0016 46 EL0046 来源地:云南省德宏州瑞丽市
Origin: Ruili City, Dehong Prefecture,
Yunnan Province17 EL0017 47 EL0047 18 EL0018 48 EL0048 19 EL0019 49 EL0049 77 EL0077 20 EL0020 50 EL0050 78 EL0078 21 EL0021 51 EL0051 79 EL0079 22 EL0022 52 EL0052 80 EL0080 23 EL0023 53 EL0053 81 EL0081 来源地:云南省红河州元阳县
Origin: Yuanyang County, Honghe Prefecture, Yunnan Province54 EL0054 82 EL0082 55 EL0055 83 EL0083 56 EL0056 84 EL0084 24 EL0024 57 EL0057 85 EL0085 25 EL0025 来源地:云南省西双版纳州景洪县
Origin: Jinghong County, Xishuangbanna
Prefecture, Yunnan Province86 EL0086 26 EL0026 来源地:云南省德宏州芒市
Origin: Mangshi City, Dehong Prefecture,
Yunnan Province27 EL0027 28 EL0028 58 EL0058 87 EL0087 29 EL0029 59 EL0059 88 EL0088 30 EL0030 60 EL0060 89 EL0089 31 EL0031 61 EL0061 90 EL0090 表 2 引物系列
Table 2. Primer sequence
接头与引物 Connector and primer 系列(5′-3′) Sequence Eco RI 接头1(Eco RI Connector 1) CTCGTAGACTGCGTACC Eco RI 接头2 (Eco RI Connector 2) AATTGGTACGCAGTCTAC Mse I 接头1 (Mse IConnector 1) GACGATGAGTCCTGAG Mse I 接头2 (Mse I Connector 2) TACTCAGGACTCAT 3-2引物 (3-2 primer) E-AAC/M-CAC 3-3引物 (3-3 primer) AAC/M-CAG 3-6引物 (3-6 primer) E-AAC/M-CTC 4-2引物 (4-2 primer) E-AAG/M-CAC 7-1引物 (7-1 primer) E-ACC/M-CAA 7-3引物 (7-3 primer) E-ACC/M-CAG 9-2引物 (9-2 primer) E-AGC/M-CAC 10-2引物 (10-2 primer) E-AGG/M-CAC 表 3 8对引物组合扩增的AFLP条带
Table 3. Amplification bands with 8 pairs of AFLP primers
引物组合
Primer pair总条带数
Total bands多态性条带数
Polymorphic bands多态性比率
Polymorphic rate/%有效等位基因数
NeNei’s基因多样性
HShannon’s多样性
IE-AAC/M-CAC 144 144 100 1.306 1 0.215 3 0.359 9 F-AAC/M-CAG 145 144 99.31 1.257 9 0.188 5 0.325 0 E-AAC/M-CTC 136 135 99.26 1.329 1 0.225 6 0.372 2 E-AAG/M-CAC 147 147 100 1.294 8 0.209 9 0.353 3 E-ACC/M-CAA 147 147 100 1.322 5 0.225 8 0.374 3 E-ACC/M-CAG 150 150 100 1.268 6 0.197 2 0.337 9 E-AGC/M-CAC 141 141 100 1.313 7 0.218 8 0.365 2 E-AGG/M-CAC 155 155 100 1.262 1 0.194 9 0.335 8 平均 Mean 145.63 145.38 99.83 1.294 4 0.209 5 0.353 0 总和 Total 1 165 1 163 -
[1] WHILEY A W, SCHAFFER B, WOLSTENHOLME B N. The avocado: botany, production and uses [J]. Postharvest Biology & Technology, 2004(31): 213−214. [2] 郑淑娟, 白净. 世界油梨产销发展概况及前景 [J]. 世界热带农业信息, 2011(11):6−9. doi: 10.3969/j.issn.1009-1726.2011.11.016ZHENG S J, BAI J. Development of avocado production and marketing and prospects in the world [J]. World Tropical Agriculture Information, 2011(11): 6−9.(in Chinese) doi: 10.3969/j.issn.1009-1726.2011.11.016 [3] FAO[DB/OL]. http://www.fao.org/faostat/en/#data. [4] WHILEY A W, SCHAFFER B, WOLSTENHOLME B N. The avocado: botany, production and uses[M]. Wallingford: CABI, 2002. [5] ZABEAU M, VOS P. Selective restriction fragment amplification: a general method for DNA fingerprinting[M]. European Patent Application 92402629. 7(Publication No. 0534858A1). Paris: European Office, 1993. [6] VOS P, HOGERS R, BLEEKER M, et al. AFLP: a new technique for DNA fingerprinting [J]. Nucleic Acids Research, 1995, 23(21): 4407−4414. doi: 10.1093/nar/23.21.4407 [7] FARROW B J, FOURIE G, VAN DEN BERG N. DNA profiling of Persea americana using AFLP markers [J]. South African Journal of Botany, 2010, 76(2): 410. [8] ZENTMYER G A. Phytophthora cinnamomi and the diseases it causes[M]. Monogr 10, Am Phytopathol Soc, St Paul, Minnesota. 1980: 96. [9] DOUHAN G W, FULLER E, MCKEE B, et al. Genetic diversity analysis of avocado (Persea americana Miller) rootstocks selected under greenhouse conditions for tolerance to Phytophthora root rot caused by Phytophthora cinnamomi [J]. Euphytica, 2011, 182(2): 209−217. doi: 10.1007/s10681-011-0433-y [10] AHMAD F, MEGIA R, POERBA Y S. Genetic diversity of Musa balbisiana Colla in Indonesia based on AFLP marker [J]. HAYATI Journal of Biosciences, 2014, 21(1): 39−47. doi: 10.4308/hjb.21.1.39 [11] NEI M, LI W H. Mathematical model for studying genetic variation in terms of restriction endonucleases [J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(10): 5269−5273. doi: 10.1073/pnas.76.10.5269 [12] SHANNON C E, WEAVER W. The mathematical theory of communication[M]. Urbana: University of Illinois Press, 1949: 170 − 180. [13] ROHLF F J. NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.1[M]. New York: Exeter Software, 2000. [14] NEI M, KUMAR S. Molecular evolution and phylogenetics[M]. Molecular evolution and phylogenetics, 2000: 87 − 88. [15] ASHWORTH V, KOBAYASHI M, DE LA CRUZ M, et al. Microsatellite markers in avocado (Persea americana Mill.): development of dinucleotide and trinucleotide markers [J]. Scientia Horticulturae, 2004, 101(3): 255−267. doi: 10.1016/j.scienta.2003.11.008 [16] BORRONE J W, BROWN J S, TONDO C L, et al. An EST-SSR-based linkage map for Persea americana Mill. (avocado) [J]. Tree Genetics & Genomes, 2009, 5(4): 553−560. [17] BORRONE J W, SCHNELL R J, VIOLI H A, et al. PRIMER NOTE: Seventy microsatellite markers from Persea americana Miller (avocado) expressed sequence tags [J]. Molecular Ecology Notes, 2006, 7(3): 439−444. doi: 10.1111/j.1471-8286.2006.01611.x [18] ASHWORTH V E T M. Microsatellite markers in avocado (Persea americana mill.): genealogical relationships among cultivated avocado genotypes [J]. Journal of Heredity, 2003, 94(5): 407−415. doi: 10.1093/jhered/esg076 [19] LAVI U, HILLEL J, VAINSTEIN A, et al. Application of DNA fingerprints for identification and genetic analysis of avocado [J]. Journal of the American Society for Horticultural Science, 1991, 116(6): 1078−1081. doi: 10.21273/JASHS.116.6.1078 [20] GROSS-GERMAN E, VIRUEL M A. Molecular characterization of avocado germplasm with a new set of SSR and EST-SSR markers: genetic diversity, population structure, and identification of race-specific markers in a group of cultivated genotypes [J]. Tree Genetics & Genomes, 2013, 9(2): 539−555. [21] MHAMEED S, SHARON D, KAUFMAN D, et al. Genetic relationships within avocado (Persea americana Mill) cultivars and between Persea species [J]. Theoretical and Applied Genetics, 1997, 94(2): 279−286. doi: 10.1007/s001220050411 [22] SHARON D, CREGAN P B, MHAMEED S, et al. An integrated genetic linkage map of avocado [J]. Theoretical and Applied Genetics, 1997, 95(5/6): 911−921. [23] VIRUEL M A, GROSS E, BARCELO-MUNOZ A. Development of a linkage map with SSR and AFLP markers in avocado[A]. Proc. VI World Avocado Congress[C]//2007. [24] RODRIGUEZ N N, FUENTES J L, COTO O, et al. Comparative study of polymorphism level, discrimination capacity and informativeness of AFLP, ISTR, SSR and Isoenzymes markers and agro-morphological traits in avocado[J]. Proc VI World Avocado Cogress, 2007. http://www.avocadosource.com/wac6/en/resumen/1c-43.pdf.