Full Genomic Sequence and Molecular Characteristics of Hunan Isolate of Chilliveinal mottle Virus
-
摘要:
目的 辣椒脉斑驳病毒(Chilli veinal mottle virus,ChiVMV)是东南亚茄科作物主产地主要病毒种类之一,严重危害辣椒等茄科作物的生产。测定ChiVMV的全基因组序列,分析其分子特征,可以明确该病毒的适应性进化以及对我国辣椒等茄科作物的潜在威胁提供科学基础。 方法 以湖南疑似感染ChiVMV辣椒为样本,采用small RNA高通量测序结合RT-PCR测定病毒全基因组序列,利用Mega、RDP及DnaSP等生物学软件分析其分子特征。 结果 ChiVMV湖南分离物全长基因组序列为9 704 nt(不包含3'-A尾),与其他分离物的序列同源性为 84% ~ 94 %。系统发育分析表明,我国的ChiVMV聚类为一个亚簇,与其他国家和地区分离物不存在重组事件。基因的替换指数R=3.29,替换碱基类型主要是 C/T替换。 结论 碱基替换突变可能是ChiVMV湖南分离物适应性进化的主要因素。 Abstract:Objective Characteristics and full genomic sequence of Chilliveinal mottle virus (ChiVMV), one of the most recurring viral pathogens infecting chili pepper plants in South-East Asia were studied to decipher the evolution of the virus for improved estimation on its potential threat to Solanacae crops. Method The ChiVMV gene from Hunan isolate (ChiVMVhn) was sequenced using the small RNA high-throughput sequencing and RT-PCR. Molecular characteristics of the gene were analyzed by Mega, RDP, and DnaSP software. Result The gene of ChiVMVhn contained 9,704 nucleotides (excluding 3’-poly A) and shared 84%-94% identity with those from the other ChiVMVs. The phylogenetic analysis suggested that ChiVMVhn represented an evolutionary isolate distinctive from those reported previously elsewhere in the world. The nucleotide substitution in ChiVMVhn gene was R=3.29 and dominated by C/T. Conclusion RNA mutation, rather than recombination, in the genes was seen crucial in the evolution of ChiVMVhn. Further studies on varieties of ChiVMV would considerably aid the scientific understanding on the evolution and pathogenic potential of the virus. -
表 1 ChiVMV RT-PCR特异性引物
Table 1. Primers for amplifying genomic sequence of ChiVMV gene
引物编号
Primers序列(5’-3’)
Sequence (5’-3’)CV1F GTATTGCCTATGCTAAGGACA CV1R TCGCCACTATTGAATAGCTTG CV2F TCTTTATCTCAGCACACATCG CV2R TCGCCACTATTGAATAGCTTG CV3F CCCAAGCACATTGTTAAGGGA CV8F TAAAGTGCAATTCTTAATCGG CV8R AAGATAATGTAGTGCATAGCC CV9F CTGTCAAGTTATAAGAAGCCTA CV9R ACTAAACTCTTTAAGCCGTTG CV12F TCATTCCATCCTACAAGGGAC CV12R TCGGGCTAGTTCTAATAAGCAA 表 2 ChiVMV全基因组序列碱基替换指数
Table 2. Maximum composite likelihood estimation of nucleotide substitution pattern
碱基 Base A T C G A - 2.59 1.8 15.44 T 3.07 - 17.98 2.21 C 3.07 25.84 - 2.21 G 21.4 2.59 1.8 - -
[1] ADAMS M J, ANTONIW J F, FAUQUET C M. Molecular criteria for genus and species discrimination within the family Potyviridae [J]. Archives of Virology, 2005, 150(3): 459−479. doi: 10.1007/s00705-004-0440-6 [2] ONG C A, TING W P. A review of plant virus diseases in peninsular Malaysia, symposium on virus diseases of topical crops [J]. Tropical Agriculture Researches Series, 1977, 10: 155−164. [3] RAVI K S, JOSEPH J, NAGARAJU N, et al. Characterization of a pepper vein banding virus from chili pepper in India [J]. Plant Disease, 1997, 81(6): 673−676. doi: 10.1094/PDIS.1997.81.6.673 [4] WANG J, LIU Z, NIU S, et al. Natural Occurrence of Chilli veinal mottle virus on Capsicum chinense in China [J]. Plant Disease, 2006, 90(3): 377. [5] NONO-WOMDIM R, SWAI I S, CHADHA M L, et al. Occurrence of Chilli veinal mottle virus in Solanum aethiopicum in Tanzania [J]. Plant Disease, 2001, 85(7): 801. [6] TAN G T, SHI L L, SHANG H L, et al. Diagnosis of viruses in chilli peper in Shanxi Province [J]. Journal of China Capsicum, 2003, 3: 32−33. [7] 刘健, 张德咏, 张松柏, 等. 湖南和福建辣椒上辣椒脉斑驳病毒的检测及系统发育分析 [J]. 江苏农业科学, 2016, 44(5):184−185.LIU J, ZHANG D Y, ZHANG S B, et al. Detection and sequence phylogenetic analysis of Chilli veinal mottle virus from Hunan and Fujian provinces [J]. Jiangsu Agricultural Sciences, 2016, 44(5): 184−185.(in Chinese) [8] 王莉爽, 陈小均, 何海永, 等. 贵州辣椒脉斑驳病毒的检测及株系分化研究 [J]. 南方农业学报, 2017, 48(7):1220−1224. doi: 10.3969/j.issn.2095-1191.2017.07.15WANG L S, CHEN X J, HE H Y, et al. Detection of Chilli veinal mottle virus from Guizhou and its strain differentiation [J]. Journal of Southern Agriculture, 2017, 48(7): 1220−1224.(in Chinese) doi: 10.3969/j.issn.2095-1191.2017.07.15 [9] 汤亚飞, 裴凡, 于琳, 等. 侵染广东辣椒的辣椒脉斑驳病毒的分子特征 [J]. 园艺学报, 2018, 45(11):2209−2216.TANG Y F, PEI F, YU L, et al. Molecular characterization of chilli veinal mottle virus infecting pepper in Guangdong Province [J]. Acta Horticulturae Sinica, 2018, 45(11): 2209−2216.(in Chinese) [10] TSAI W S, HUANG Y C, ZHANG D Y, et al. Molecular characterization of the CP gene and 3'UTR of Chilli veinal mottle virus from South and Southeast Asia [J]. Plant Pathology, 2008, 57(3): 408−416. doi: 10.1111/j.1365-3059.2007.01780.x [11] TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Molecular Biology and Evolution, 2011, 28(10): 2731−2739. doi: 10.1093/molbev/msr121 [12] MARTIN D P, MURRELL B, GOLDEN M, et al. RDP4: Detection and analysis of recombination patterns in virus genomes [J]. Virus Evolution, 2015, 1(1): vev003. doi: 10.1093/ve/vev003 [13] PADIDAM M, SAWYER S, FAUQUET C M. Possible emergence of new geminiviruses by frequent recombination [J]. Virology, 1999, 265(2): 218−225. doi: 10.1006/viro.1999.0056 [14] SMITH J. Analyzing the mosaic structure of genes [J]. Journal of Molecular Evolution, 1992, 34(2): 126−129. doi: 10.1007/bf00182389 [15] POSADA D, CRANDALL K A. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(24): 13757−13762. doi: 10.1073/pnas.241370698 [16] GIBBS M J, ARMSTRONG J S, GIBBS A J. Sister-Scanning: a Monte Carlo procedure for assessing signals in recombinant sequences [J]. Bioinformatics, 2000, 16(7): 573−582. doi: 10.1093/bioinformatics/16.7.573 [17] LIBRADO P, ROZAS J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data [J]. Bioinformatics, 2009, 25(11): 1451−1452. doi: 10.1093/bioinformatics/btp187 [18] SHAH H, YASMIN T Y, FAHIM M, et al. Transmission and host range studies of Pakistani isolate of Chilli veinal mottle virus [J]. Pakistan Journal of Botany, 2008, 40(6): 2669−2681. [19] BENTLEY K, EVANS D J. Mechanisms and consequences of positive-strand RNA virus recombination [J]. Journal of General Virology, 2018, 99(10): 1345−1356. doi: 10.1099/jgv.0.001142 [20] COMBE M, SANJUÁN R. Variation in RNA virus mutation rates across host cells [J]. PLoS Pathogens, 2014, 10(1): e1003855. doi: 10.1371/journal.ppat.1003855 [21] NOVELLA I S, PRESLOID J B, TAYLOR R T. RNA replication errors and the evolution of virus pathogenicity and virulence [J]. Current Opinion in Virology, 2014, 9: 143−147. doi: 10.1016/j.coviro.2014.09.017