Effect of Cultivation Practices on Fungal Diversity in Rhizosphere Soil at Winter Potato Fields as Determined by High-throughput Sequencing
-
摘要:
目的 从土壤微生态角度研究不同覆盖栽培模式对冬作马铃薯根际土壤真菌多样性的影响,旨在为广西冬作马铃薯生产探索最佳栽培模式。 方法 采用ⅠlluminaMiseq高通量测序技术对马铃薯在黑地膜覆盖栽培、稻草覆盖栽培和常规栽培(对照)3种处理条件下的马铃薯全生育期根际土壤真菌群落进行多样性分析。 结果 黑地膜覆盖栽培的根际土壤真菌多样性指数最高,其中黑地膜覆盖栽培Simpson指数与稻草覆盖栽培差异达显著水平(P<0.05);不同处理优势菌株种类和相对丰度随着马铃薯生育进程呈现不同变化规律,子囊菌门均为最优势真菌门,其中黑地膜覆盖栽培子囊菌门相对丰度最高,3种栽培模式的优势菌属分别为头束霉属、田头菇属、被孢霉属;在马铃薯生长后期,黑地膜覆盖栽培处理的根际土壤中被孢霉菌、头束霉属、粉红粘帚霉属、枝顶孢属的相对丰度比常规栽培处理的高,稻草覆盖栽培处理镰孢菌相对丰度较其他两个处理的更低。 结论 黑地膜覆盖栽培处理的根际土壤真菌群落结构和多样性比稻草覆盖栽培和常规栽培处理更加优化和丰富,有利于土壤中有机质的分解转化和有益微生物的生长繁殖,可为马铃薯生长发育提供充足的养分条件和稳定的根际微生态环境;稻草覆盖栽培可以缓解镰孢菌引起的马铃薯土传病害。 Abstract:Objective From the perspective of micro-ecology, effect of varied cultivation practices on fungal diversity in the rhizosphere soil of winder potato fields were studied to improve the cultivation in Guangxi. Methods The Illumina Miseq high-throughput sequencing was used to compare the fungal diversity in the rhizosphere soils at fields under either black film mulching (BFM), rice straw mulching (RSM) or conventional practice (CK). Results The fungal diversity index in rhizosphere soil was higher under BFM than the other two. The difference on the Simpson indices of BFM and RSM was significant (P<0.05). The species and relative abundance of dominant strains in the soils differed among the treatments and potato growth period. Ascomycota was the most dominant phylum found in the soils under all 3 methods with its relative abundance being the greatest under BFM. The dominant fungi genus under BFM was Cephalotrichum, under RSM Agrocybe, and under CK Mortierella. In late stage of potato growth, BFM resulted in a higher relative abundance of Mortierella,Cephalotrichum, Clonostachys, and Acremonium than did CK, but the lowest in the relative abundance of Fusarium among all treatments. Conclusion The application of a black film for mulching on the ground (BFM) at potato growing fields significantly improved the species abundance, structure, and diversity of fungal community in the rhizosphere soil over the other practices. It facilitated the decomposition and transformation of organic matters in soil, the growth and proligeration of beneficial microorganisms, and the stability of the rhizosphere microbial environment for optimal growth and development of potatoes. On the other hand, the use of rice straws in RSM appeared to mitigate the soil-borne disease caused by Fusarium on the potato. -
Key words:
- High-throughput sequencing /
- rhizosphere soil /
- fungal diversity /
- black film mulching /
- potato
-
表 1 样本测序数据统计结果
Table 1. Sequencing of soil samples
处理
Treatment有效序列数
Effective Tags样品长度
AvgLen/bp有效序列数
百分比
Effective/%测序深度指数
Coverage/%A1 73 725 249 91.99 99.97 A2 73 708 250 92.08 99.95 A3 71 870 245 89.82 99.94 A4 72 707 240 91.01 99.96 A5 73 774 240 92.04 99.93 B1 72 440 248 90.87 99.93 B2 73 058 251 91.62 99.95 B3 74 061 278 92.43 99.94 B4 7 862 283 92.0 99.95 B5 73 842 248 91.95 99.92 C1 73 199 255 91.42 99.96 C2 73 334 237 91.27 99.95 C3 73 179 240 91.23 99.97 C4 73 357 243 91.34 99.95 C5 72 037 235 89.98 99.93 注:A1~A5依次为黑地膜覆盖栽培的苗期、块茎形成期、块茎膨大期、淀粉积累期、成熟期,B1~B5依次为稻草覆盖栽培的苗期、块茎形成期、块茎膨大期、淀粉积累期、成熟期,C1~C5依次为露地栽培的苗期、块茎形成期、块茎膨大期、淀粉积累期、成熟期,下同。
Note: A1~A5 is seeding, tuber initiation stage, bulking stage, starch accumulation stage, maturationstage of black film mulching; B1~B5 is seeding, tuber initiation stage, bulking stage, starch accumulation stage, maturation stage of rice straw mulching; C1~C5 is seeding, tuber initiation stage, bulking stage, starch accumulation stage, maturation stageofconventionalculture.the same as below.表 2 不同栽培模式马铃薯根际土壤真菌群落多样性
Table 2. Diversity of fungal communities in rhizosphere soils on grounds under different cultivation practices
处理 Treatment 数目 OTU 丰富度指数 ACE 丰富度指数 Chao1 多样性指数 Simpson 多样性指数 Shannon A1 352 364.33±5.81 cde 373.00±6.25 bcd 0.06±0.02 c 4.04±0.22 a A2 311 333.17±7.51 fg 346.06±5.51 def 0.11±0.01 bc 3.30±0.32 ab A3 336 362.02±2.08 def 359.43±9.16 cd 0.05±0.03 c 3.70±0.06 ab A4 363 376.37±2.00 abcd 382.89±1.10 abc 0.04±0.02 c 3.94±0.21 ab A5 297 334.80±2.11 efg 346.04±5.75 def 0.08±0.02 c 3.24±0.41 ab B1 249 394.80±3.98 abc 322.67±2.90 f 0.08±0.01 c 3.69±0.12 ab B2 376 397.94±4.85 ab 404.33±7.54 a 0.05±0.01 c 3.80±0.32 ab B3 339 367.40±3.73 bcd 371.34±1.85 bcd 0.21±0.02 ab 2.74±0.18 ab B4 307 328.59±5.02 g 326.69±5.58 ef 0.10±0.02 c 3.14±0.50 ab B5 290 329.51±7.33 g 323.00±5.51 f 0.24±0.03 a 2.34±0.34 b C1 348 361.80±2.32 def 363.12±4.00 cd 0.14±0.02 abc 3.20±0.23 ab C2 361 379.03±5.23 abcd 396.00±4.16 ab 0.06±0.02 c 3.72±0.38 ab C3 350 357.21±2.61 defg 358.14±1.39 cd 0.10±0.01 c 3.51±0.26 ab C4 348 366.62±10.75 cd 372.39±5.48 bcd 0.04±0.01 c 3.94±0.42 ab C5 370 401.10±8.72 a 400.49±6.64 ab 0.14±0.03 abc 3.25±0.28 ab A(总计/平均) 1659 354.14±2.98 a 361.49±1.09 b 0.07±0.01 b 3.64±0.16 a B(总计/平均) 1561 363.65±4.85 a 349.61±2.97 c 0.14±0.01 a 3.14±0.08 a C(总计/平均) 1777 373.15±4.31 a 373.03±0.59 a 0.10±0.01 ab 3.53±0.28 a 注:表中同列数据后的小写字母反映的是不同处理间在0.05水平上的差异显著性。
Note: The lowercase letters after the same column in the table represent difference significant between different treatment at 0.05 level. -
[1] 张晶, 张惠文, 李新宇, 等. 土壤真菌多样性及分子生态学研究进展 [J]. 应用生态学报, 2004, 15(10):1958−1962. doi: 10.3321/j.issn:1001-9332.2004.10.051ZHANG J, ZHANG H W, LI X Y, et al. Research advances in soil fungal diversity and molecular ecology [J]. Chinese Journal of Applied Ecology, 2004, 15(10): 1958−1962.(in Chinese) doi: 10.3321/j.issn:1001-9332.2004.10.051 [2] 李发虎, 李明, 刘金泉, 等. 生物炭对温室黄瓜根际土壤真菌丰度和根系生长的影响 [J]. 农业机械学报, 2017, 48(4):265−270, 341. doi: 10.6041/j.issn.1000-1298.2017.04.034LI F H, LI M, LIU J Q, et al. Effect of biochar on fungal abundance of rhizosphere soil and cucumber root growth in greenhouse [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 265−270, 341.(in Chinese) doi: 10.6041/j.issn.1000-1298.2017.04.034 [3] VAN ELSAS J D, GARBEVA P, SALLES J. Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens [J]. Biodegradation, 2002, 13(1): 29−40. doi: 10.1023/A:1016393915414 [4] KNELMAN J E, LEGG T M, O’NEILL S P, et al. Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield [J]. Soil Biology and Biochemistry, 2012, 46: 172−180. doi: 10.1016/j.soilbio.2011.12.001 [5] Lynch JM. The Rhizosphere[M]. Chichester: John Wiley and Sons, Ltd. 1990: 458 [6] 周登博, 井涛, 陈宇丰, 等. 土壤微生物多样性研究方法及其在土传病害防治中的应用展望 [J]. 热带农业科学, 2018, 38(2):79−86, 112.ZHOU D B, JING T, CHEN Y F, et al. Analysis methods for microbial population diversity in soils and their application prospect in the control of soil-borne diseases [J]. Chinese Journal of Tropical Agriculture, 2018, 38(2): 79−86, 112.(in Chinese) [7] 秦楠, 栗东芳, 杨瑞馥. 高通量测序技术及其在微生物学研究中的应用 [J]. 微生物学报, 2011, 51(4):445−457.QIN N, LI D F, YANG R F. Next-generation sequencing technologies and the application in microbiology: a review [J]. Acta Microbiologica Sinica, 2011, 51(4): 445−457.(in Chinese) [8] 徐雪雪, 王东, 秦舒浩, 等. 沟垄覆膜连作马铃薯根际土壤真菌多样性分析 [J]. 水土保持学报, 2015, 29(6):301−306, 310.XU X X, WANG D, QIN S H, et al. Diversity analysis of fungal communities in potato continuous cropping soil under different patterns of ridge-furrow film mulching [J]. Journal of Soil and Water Conservation, 2015, 29(6): 301−306, 310.(in Chinese) [9] 张国青, 赵盼, 董彦旭, 等. 高通量测序分析环保肥料增效剂对马铃薯根际土壤真菌多样性变化影响 [J]. 微生物学通报, 2017, 44(11):2644−2651.ZHANG G Q, ZHAO P, DONG Y X, et al. Effects of a novel fertilizer synergist on fungi diversity from potato rhizosphere soil [J]. Microbiology China, 2017, 44(11): 2644−2651.(in Chinese) [10] 姜晓芳. 马铃薯稻草包芯栽培根际土壤微生物多样性分析[D]. 福州: 福建农林大学, 2016.JIANG X F. Study on microbial diversity in rhizosphere soil of potato by straw-mulching in sandwich model[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. (in Chinese) [11] GRICE E A, KONG H H, CONLAN S, et al. Topographical and temporal diversity of the human skin microbiome [J]. Science, 2009, 324(5931): 1190−1192. doi: 10.1126/science.1171700 [12] 黄修梅, 李明, 戎素萍, 等. 生物炭添加对马铃薯根际土壤真菌多样性和产量的影响 [J]. 中国蔬菜, 2019(1):51−56.HUANG X M, LI M, RONG S P, et al. Effects of biochar addition on fungi diversity of potato rhizosphere soil and yield of potato [J]. China Vegetables, 2019(1): 51−56.(in Chinese) [13] 张瑞平, 苟小梅, 张毅, 等. 生物有机肥与化肥配施对植烟土壤养分和真菌群落特征的影响 [J]. 西北农林科技大学学报, 2020, 48(8):85−92.ZHANG R P, GOU X M, ZHANG Y, et al. Effects of bio-organic fertilizer combined with chemical fertilizer on nutrients and fungal community characteristics in tobacco-growing soil [J]. Journal of Northwest Agriculture &Forestry university(Natural Science Edition), 2020, 48(8): 85−92.(in Chinese) [14] 王静, 张天佑, 杨娟娟, 等. 旱地不同膜覆盖种植模式对土壤微生物数量的影响 [J]. 生态与农村环境学报, 2011, 27(6):55−58. doi: 10.3969/j.issn.1673-4831.2011.06.010WANG J, ZHANG T Y, YANG J J, et al. Effects of plastic film mulching on population of soil microbes in dryland [J]. Journal of Ecology and Rural Environment, 2011, 27(6): 55−58.(in Chinese) doi: 10.3969/j.issn.1673-4831.2011.06.010 [15] 于振文. 作物栽培学各论[M]. 北京: 中国农业出版社, 2003. [16] LIESACK W, SCHNELL S, REVSBECH N P. Microbiology of flooded rice paddies [J]. FEMS Microbiology Reviews, 2000, 24(5): 625−645. doi: 10.1111/j.1574-6976.2000.tb00563.x [17] 李丽淑, 樊吴静, 杨鑫, 等. 不同栽培方式、播种深度对冬种马铃薯土壤水热及产量的影响 [J]. 西南农业学报, 2018, 31(4):673−679.LI L S, FAN W J, YANG X, et al. Effects of different cultivation methods and sowing depth on soil water, temperature and yield of winter potato [J]. Southwest China Journal of Agricultural Sciences, 2018, 31(4): 673−679.(in Chinese) [18] 郑有才, 杨祁峰. 不同覆盖模式对旱作马铃薯生育期及土壤含水量的影响 [J]. 安徽农业科学, 2008, 36(20):8462−8464. doi: 10.3969/j.issn.0517-6611.2008.20.058ZHEN Y C, Yang Q F. Influence of different mulching models on the growth and development of potato and soil water content in dry land [J]. Journal of Anhui Agricultural Sciences, 2008, 36(20): 8462−8464.(in Chinese) doi: 10.3969/j.issn.0517-6611.2008.20.058 [19] 曾路生, 廖敏, 黄昌勇, 等. 水稻不同生育期的土壤微生物量和酶活性的变化 [J]. 中国水稻科学, 2005, 19(5):441−446. doi: 10.3321/j.issn:1001-7216.2005.05.010ZENG L S, LIAO M, HUANG C Y, et al. Variation of soil microbial biomass and enzyme activities at different developmental stages in rice [J]. Chinese Journal of Rice Science, 2005, 19(5): 441−446.(in Chinese) doi: 10.3321/j.issn:1001-7216.2005.05.010 [20] BEIMFORDE C, FELDBERG K, NYLINDER S, et al. Estimating the Phanerozoic history of the Ascomycota lineages: Combining fossil and molecular data [J]. Molecular Phylogenetics and Evolution, 2014, 78: 386−398. doi: 10.1016/j.ympev.2014.04.024 [21] 牛秀群, 李金花, 张俊莲, 等. 甘肃省干旱灌区连作马铃薯根际土壤中镰刀菌的变化 [J]. 草业学报, 2011, 20(4):236−243. doi: 10.11686/cyxb20110429NIU X Q, LI J H, ZHANG J L, et al. Changes of Fusarium in rhizosphere soil under potato continuous cropping systems in arid-irrigated area of Gansu Province [J]. Acta Prataculturae Sinica, 2011, 20(4): 236−243.(in Chinese) doi: 10.11686/cyxb20110429 [22] 杨艳华. 土壤解磷微生物的分离鉴定[D]. 郑州: 河南农业大学, 2014.YANG Y H. Isolation and identification of phosphate-solubilizing microorganism from soil[D]. Zhengzhou: Henan Agricultural University, 2014. (in Chinese) [23] 周翠. 粉红粘帚霉的形态特征及分子生物学鉴定 [J]. 山东林业科技, 2017, 47(4):61−62, 73. doi: 10.3969/j.issn.1002-2724.2017.04.017ZHOU C. Morphological and molecular identification of Gliocladiumroseum [J]. Journal of Shandong Forestry Science and Technology, 2017, 47(4): 61−62, 73.(in Chinese) doi: 10.3969/j.issn.1002-2724.2017.04.017 [24] 耿月华. 中国土壤暗色丝孢菌五个疑难属的形态学和分子系统学分析[D]. 泰安: 山东农业大学, 2011.GENG Y H. Morphological and molecular phylogenetic analysis of five genera of soil dematiaceous hyphomycetes in China[D]. Taian, China: Shandong Agricultural University, 2011. (in Chinese) [25] 安小敏, 胡俊, 武建华, 等. 马铃薯枯萎病病原菌研究概述 [J]. 中国马铃薯, 2017, 31(5):302−306. doi: 10.3969/j.issn.1672-3635.2017.05.010AN X M, HU J, WU J H, et al. Overview of pathogen causing potato Fusariumwilt [J]. Chinese Potato Journal, 2017, 31(5): 302−306.(in Chinese) doi: 10.3969/j.issn.1672-3635.2017.05.010