• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低共熔溶液提取铁观音茶多酚工艺的响应面法优化

阮怿航 吴亮宇 鲁静 黄秀红 刘丽辰 林金科

阮怿航,吴亮宇,鲁静,等. 低共熔溶液提取铁观音茶多酚工艺的响应面法优化 [J]. 福建农业学报,2020,35(2):217−225 doi: 10.19303/j.issn.1008-0384.2020.02.013
引用本文: 阮怿航,吴亮宇,鲁静,等. 低共熔溶液提取铁观音茶多酚工艺的响应面法优化 [J]. 福建农业学报,2020,35(2):217−225 doi: 10.19303/j.issn.1008-0384.2020.02.013
RUAN Y H, WU L Y, LU J, et al. Deep Eutectic Solvents Extraction of Polyphenols from Tieguanyin Tea Optimized by Response Surface Method [J]. Fujian Journal of Agricultural Sciences,2020,35(2):217−225 doi: 10.19303/j.issn.1008-0384.2020.02.013
Citation: RUAN Y H, WU L Y, LU J, et al. Deep Eutectic Solvents Extraction of Polyphenols from Tieguanyin Tea Optimized by Response Surface Method [J]. Fujian Journal of Agricultural Sciences,2020,35(2):217−225 doi: 10.19303/j.issn.1008-0384.2020.02.013

低共熔溶液提取铁观音茶多酚工艺的响应面法优化

doi: 10.19303/j.issn.1008-0384.2020.02.013
基金项目: 福建省高校产学合作项目(2016N5001);安溪县科技项目(KH1500790);福建省安溪县现代农业产业园协同创新中心项目(KMD18003A)
详细信息
    作者简介:

    阮怿航(1994−),男,硕士研究生,研究方向:茶资源利用与保健功效(E-mail:ruanyihang2017@163.com

    通讯作者:

    林金科(1967−),男,博士,教授,研究方向:茶叶深加工与资源利用(E-mail:ljk213@163.com

  • 中图分类号: TS 201.2

Deep Eutectic Solvents Extraction of Polyphenols from Tieguanyin Tea Optimized by Response Surface Method

  • 摘要:   目的  探索一种绿色、环保、安全、高效的铁观音茶多酚提取新方法,为茶多酚绿色提取提供新的技术参考。  方法  以铁观音成品茶为原料,采用新型绿色溶剂——低共熔溶液提取茶多酚;首先筛选出最优的低共熔溶液提取体系,然后在单因素试验的基础上,通过响应面法优化,研究时间、温度、溶液含水率对提取率的影响,得出最佳提取条件并分析其主要成分;最后通过测定DPPH自由基清除率分析茶多酚的抗氧化能力。  结果  筛选出最适的茶多酚低共熔溶液提取体系为:乳酸-甜菜碱,其次得到最佳单因素提取条件为提取时间40 min、提取温度60℃、含水率30%、摩尔比2 1、固液比1 40(g : mL);响应面优化分析得到最佳提取条件为:时间46.79 min、温度62.48℃、溶液含水率32.15%,在此条件下茶多酚提取率为15.42%。通过高效液相色谱分析茶多酚组分,其中没食子酸含量占1.40%,儿茶素类物质占84.99%,其他组分占13.61%。低共熔溶液法提取的茶多酚DPPH自由基半清除浓度(IC50)值73.89 μg·mL−1,比抗坏血酸提高了37.80%。  结论  采用响应面法优化得出的低共熔溶液提取茶多酚最佳工艺条件,可有效提高铁观音茶多酚提取率。
  • 图  1  不同提取时间对茶多酚提取率的影响

    注:不同大写字母表示差异极显著(P<0.01),不同小写字母表示差异显著(P<0.05),图2~5同。

    Figure  1.  Effect of processing time on polyphenol extraction rate

    Note: Different uppercase and lowercase letters indicate extremely significant differences(P<0.01) and significant differences(P<0.05). The same as Fig.25.

    图  2  不同提取温度对茶多酚提取率的影响

    Figure  2.  Effect of processing temperature on polyphenol extraction rate

    图  3  不同低共熔组分摩尔比对茶多酚提取率的影响

    Figure  3.  Effect of molar ratio of DESs on polyphenol extraction rate

    图  4  不同低共熔溶液含水率对茶多酚提取率的影响

    Figure  4.  Effect of moisture content of DESs on polyphenol extraction rate

    图  5  不同固液比对茶多酚提取率的影响

    Figure  5.  Effect of substrate-solvent ratio on polyphenol extraction rate

    图  6  各因素影响多酚提取率的响应面分析

    Figure  6.  Response surface diagram of factors affecting polyphenol extraction rate in DESs process

    图  7  茶多酚组分HPLC色谱分析

    Figure  7.  HPLC chromatogram of tea polyphenols

    图  8  儿茶素各组分含量

    Figure  8.  Contents of catechin components

    图  9  茶多酚提取物对DPPH自由基的清除作用

    Figure  9.  DPPH free radicals scavenging of tea polyphenol extract

    表  1  Box-Behnken试验因素水平及编码

    Table  1.   Factors and coding levels in Box-Behnken experiment

    水平
    Levels
    因素 Factors
    A时间
    Time/min
    B温度
    Temperature/℃
    C溶液含水率
    Water raito of solvent/%
    −1 20 50 20
    0 40 60 30
    1 60 70 40
    下载: 导出CSV

    表  2  不同低共熔溶液体系提取茶多酚

    Table  2.   DESs for polyphenol extraction

    名称
    Name
    提取率
    Extraction ratio/%
    相对水提取提高
    Aqueous extraction ratio exceeded by DES/%
    水 Water8.61±0.27Aa
    果糖/氯化胆碱
    Fructose/Choline chloride
    12.47±0.74Bb44.90
    乳酸/氯化胆碱
    Lacticacid/Choline chloride
    12.69±0.81Bb47.36
    苹果酸/甜菜碱
    Malicacid/Choline chloride
    12.68±0.68 Bb47.24
    柠檬酸/甜菜碱
    Citricacid/Betaine
    12.79±0.54Bb48.59
    乳酸/甜菜碱
    Lacticacid/Betaine
    14.40±0.53 Cc67.29
    注:同列数据后不同大、小写字母表示差异极显著(P<0.01)或差异显著(P<0.05)。
    Note: Different uppercase and lowercase letters in the same column indicate extremely significant differences (P<0.01) and significant differences (P<0.05).
    下载: 导出CSV

    表  3  响应面优化结果

    Table  3.   Response surface experiment and results

    序号
    Number
    A时间
    Time
    B温度
    Temperature
    C含水率
    Water ratio
    Y提取率
    Extraction ratio/%
    100015.46
    2−10114.68
    300015.33
    400015.40
    5−10−113.93
    60−1−113.62
    7−1−1014.37
    810−114.63
    900015.27
    1011015.07
    111−1014.74
    1201114.88
    1301−114.57
    14−11014.86
    150−1114.76
    1600015.39
    1710115.01
    下载: 导出CSV

    表  4  方差分析

    Table  4.   Regression statistical analysis

    来源
    Source
    平方和
    Sum of square
    自由度
    Degree of freedom
    均方
    Mean square
    F
    F value
    P
    P value
    显著性
    Significance
    模型 Model4.1390.4648.03<0.000 1**
    A时间 Time0.3210.3233.890.000 6**
    B温度 Temperature0.4510.4546.70.000 2**
    C含水率 Water raito0.8310.8387.03<0.000 1**
    AB6.40×10−316.40×10−30.670.440 2
    AC0.03410.0343.580.100 4
    BC0.1710.1718.010.003 8**
    A20.2710.2728.080.001 1**
    B20.5410.5456.290.000 1**
    C21.311.3135.65<0.000 1**
    残差 Resdual0.06779.561×10−3
    失拟项 Lack of fit0.04630.0152.920.164
    纯误差 Pure error0.02145.250×10−3
    总和 Cor total4.216
    注:*,P<0.05,表示显著差异;**,P<0.01,表示极显著差异。
    Note: *, P<0.05, indicating significant difference; **, P<0.01, indicating extremely significant difference.
    下载: 导出CSV
  • [1] 黄欢, 赵展恒, 王玉娇, 等. 铁观音加工过程中咖啡碱、茶多酚、游离氨基酸含量变化研究 [J]. 福建农业学报, 2014, 29(3):282−285. doi: 10.3969/j.issn.1008-0384.2014.03.017

    HUANG H, ZHAO Z H, WANG Y J, et al. Study on the content change of caffeine, tea polyphenols and free amino acids in the Tie-Guanyin oolong tea machining process [J]. Fujian Journal of Agricultural Sciences, 2014, 29(3): 282−285.(in Chinese) doi: 10.3969/j.issn.1008-0384.2014.03.017
    [2] 冯欢欢, 陈识文, 高梦祥. β-环糊精结合响应面法优化茶多酚的提取工艺 [J]. 食品科技, 2014, 39(11):212−216.

    FENG H H, CHEN S W, GAO M X. Optimization of the extraction process of tea polyphenols from tea dust by response surface methodology and β-CD [J]. Food Science and Technology, 2014, 39(11): 212−216.(in Chinese)
    [3] 陆爱霞, 姚开, 吕远平, 等. 茶多酚提取和应用研究进展 [J]. 食品科技, 2003, 28(2):53−55. doi: 10.3969/j.issn.1005-9989.2003.02.020

    LU A X, YAO K, Lü Y P, et al. Extraction and application of tea polyphenols [J]. Food Science and Technology, 2003, 28(2): 53−55.(in Chinese) doi: 10.3969/j.issn.1005-9989.2003.02.020
    [4] 赵晶晶, 刘宝友, 魏福祥. 低共熔离子液体的性质及应用研究进展 [J]. 河北工业科技, 2012, 29(3):184−189. doi: 10.7535/hbgykj.2012yx0316

    ZHAO J J, LIU B Y, WEI F X. Property and application of eutectic ionic liquid [J]. Hebei Journal of Industrial Science and Technology, 2012, 29(3): 184−189.(in Chinese) doi: 10.7535/hbgykj.2012yx0316
    [5] 杨申明, 王振吉, 王波. 白竹山云雾茶中茶多酚提取工艺研究 [J]. 食品工业, 2014, 35(8):4−8.

    YANG S M, WANG Z J, WANG B. Study on extraction technology of tea polyphenol from baizhu mountain tea [J]. The Food Industry, 2014, 35(8): 4−8.(in Chinese)
    [6] 李思睿, 董慧茹. 溶剂浮选法分离富集茶叶中茶多酚的研究 [J]. 分析科学学报, 2007, 23(5):571−574. doi: 10.3969/j.issn.1006-6144.2007.05.019

    LI S R, DONG H R. Study on the separation and concentration of tea polyphenols in tea by solvent sublation [J]. Journal of Analytical Science, 2007, 23(5): 571−574.(in Chinese) doi: 10.3969/j.issn.1006-6144.2007.05.019
    [7] 韦星船, 陈小宏, 王琪莹. 微波-离子沉淀法提取茶叶中茶多酚的工艺研究 [J]. 食品科技, 2007, 32(8):132−138. doi: 10.3969/j.issn.1005-9989.2007.08.037

    WEI X C, CHEN X H, WANG Q Y. Study on the extract technology of tea polyphenol by microwave radiation and Ion co-precipitation [J]. Food Science and Technology, 2007, 32(8): 132−138.(in Chinese) doi: 10.3969/j.issn.1005-9989.2007.08.037
    [8] 张效林, 薛伟明, 李平, 等. 树脂吸附法分离茶多酚及咖啡碱 [J]. 化学工程, 2001, 29(3):15−19. doi: 10.3969/j.issn.1005-9954.2001.03.003

    ZHANG X L, XUE W M, LI P, et al. Adsorptive separation based on resins for tea-polyphenols and caffeine [J]. Chemical Engineering(China), 2001, 29(3): 15−19.(in Chinese) doi: 10.3969/j.issn.1005-9954.2001.03.003
    [9] PAN X J, NIU G G, LIU H Z. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves [J]. Chemical Engineering and Processing: Process Intensification, 2003, 42(2): 129−133. doi: 10.1016/S0255-2701(02)00037-5
    [10] 张素霞. 茶多酚提取工艺的研究 [J]. 食品科技, 2010, 35(8):267−270.

    ZHANG S X. Study on extraction process of the tea polyphenols [J]. Food Science and Technology, 2010, 35(8): 267−270.(in Chinese)
    [11] 于基成, 金莉, 薄尔琳, 等. 超临界CO2萃取技术在茶多酚提取中的应用 [J]. 食品科技, 2007, 32(1):85−87. doi: 10.3969/j.issn.1005-9989.2007.01.024

    YU J C, JIN L, BO E L, et al. Application of supercritical fluid extraction technique on tea polyhenols [J]. Food Science and Technology, 2007, 32(1): 85−87.(in Chinese) doi: 10.3969/j.issn.1005-9989.2007.01.024
    [12] 代忠波. 茶饮料萃取技术研究现状 [J]. 饮料工业, 2013, 16(9):39−45.

    DAI Z B. An overview of tea leaf extraction technologies for RTD tea beverages [J]. Beverage Industry, 2013, 16(9): 39−45.(in Chinese)
    [13] 张咪, 汤小芳. 乙醇/硫酸铵双水相体系萃取茶叶中茶多酚的研究 [J]. 广东化工, 2013, 40(14):26−28, 32. doi: 10.3969/j.issn.1007-1865.2013.14.013

    ZHANG M, TANG X F. The study of ethanol/ammonium sulfate aqueous two-phase extraction of tea polyphenols in tea [J]. Guangdong Chemical Industry, 2013, 40(14): 26−28, 32.(in Chinese) doi: 10.3969/j.issn.1007-1865.2013.14.013
    [14] 韦露, 樊友军. 低共熔溶剂及其应用研究进展 [J]. 化学通报, 2011, 74(4):333−339.

    WEI L, FAN Y J. Progress of deep eutectic solvents and their applications [J]. Chemistry, 2011, 74(4): 333−339.(in Chinese)
    [15] 崔琦. 沙棘叶中主要黄酮类成分的提取富集工艺研究[D]. 哈尔滨: 东北林业大学, 2016.

    CUI Q. Study on extraction and enrichment of main flavonoids from Sea buckthorn leaves[D]. Harbin: Northeast Forestry University, 2016. (in Chinese)
    [16] OZTURK B, PARKINSON C, GONZALEZ-MIQUEL M. Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents [J]. Separation and Purification Technology, 2018, 206: 1−13. doi: 10.1016/j.seppur.2018.05.052
    [17] 李婷婷. 微波辅助低共熔溶剂提取黄芩中主要黄酮成分研究[D]. 哈尔滨: 东北林业大学, 2014.

    LI T T. Study on extraction of main flavonoids from Scutellaria baicalensis Georgi by microwave-assisted eutectic solvent. Harbin: Northeast Forestry University, 2014. (in Chinese)
    [18] XU B J, CHANG S K C. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents [J]. Journal of Food Science, 2007, 72(2): S159−S166. doi: 10.1111/j.1750-3841.2006.00260.x
    [19] 李堆淑. 复合酶提取绿茶茶多酚工艺及其抑菌性 [J]. 广西林业科学, 2019, 48(2):229−234. doi: 10.3969/j.issn.1006-1126.2019.02.017

    LI D S. Compound enzyme extraction of green tea polyphenols and its bacteriostasis [J]. Guangxi Forestry Science, 2019, 48(2): 229−234.(in Chinese) doi: 10.3969/j.issn.1006-1126.2019.02.017
    [20] 李加兴, 陈选, 邓佳琴, 等. 黄秋葵黄酮的提取工艺和体外抗氧化活性研究 [J]. 食品科学, 2014, 35(10):121−125. doi: 10.7506/spkx1002-6630-201410022

    LI J X, CHEN X, DENG J Q, et al. Extraction and antioxidant activity in vitro of okra flavonoids [J]. Food Science, 2014, 35(10): 121−125.(in Chinese) doi: 10.7506/spkx1002-6630-201410022
    [21] BI W T, TIAN M L, ROW K H. Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization [J]. Journal of Chromatography A, 2013, 1285: 22−30. doi: 10.1016/j.chroma.2013.02.041
    [22] 洪姗. 儿茶素分子定向修饰及其抗氧化构效关系研究[D]. 杭州: 浙江大学, 2015.

    HONG S. Development of specific modification methods for catechins and structure and antioxidant activity relationship investigation[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
    [23] 韦献雅, 殷丽琴, 钟成, 等. DPPH法评价抗氧化活性研究进展 [J]. 食品科学, 2014, 35(9):317−322. doi: 10.7506/spkx1002-6630-201409062

    WEI X Y, YIN L Q, ZHONG C, et al. Advances in the DPPH radical scavenging assay for antioxidant activity evaluation [J]. Food Science, 2014, 35(9): 317−322.(in Chinese) doi: 10.7506/spkx1002-6630-201409062
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  5239
  • HTML全文浏览量:  2284
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-20
  • 修回日期:  2019-10-21
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回