Process Optimization and Antimicrobial Activity of Natural Preservative Extracted from Bamboo Sawdust
-
摘要:
目的 为研究竹屑制备天然防腐剂的最优工艺并探讨其抑菌性能。 方法 以竹屑为原料,采用乙酸乙酯回流法,在单因素试验基础上,应用响应面法优化天然防腐剂制备条件,并考察其抑菌活性。 结果 竹屑制备天然防腐剂的最佳工艺条件为超声功率300 W、提取温度89℃、液料比20 ∶ 1、提取时间2 h。在此条件下,所得提取物对大肠杆菌、金黄色葡萄球菌、枯草芽孢杆菌和黑曲霉的抑菌效果达到最强,抑菌圈直径分别为:9.33、15.67、10.00、6.67 mm,最低抑菌浓度分别为:0.025 00、0.012 50、0.050 00和0.100 00 g·mL−1,竹屑天然防腐剂得率为4.77%。 结论 响应面法优化工艺制备的天然防腐剂对4种供试菌抑菌效果良好,制备工艺可行性高。该工艺可为竹废弃物的加工再利用提供参考。 Abstract:Objective Optimum preparation and antibacterial properties of a natural preservative extracted from bamboo sawdust were studied. Method Utilizing bamboo sawdust, a natural preservative was prepared with the ethyl acetate reflux method. Processing conditions were optimized by the response surface methodology based on the results of a single factor test. In vitro antimicrobial activity of the extract was determined. Result The finalized process applied 300 W ultrasonic power on the mixture of solvent-to-substrate ratio at 20 ∶ 1 to extract at 89℃ for 2 h. The product yield reached 4.77%. The extracted preservative displayed peak antimicrobial effects on Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Aspergillus niger with the average inhibition diameters of 9.33 mm at a concentration of 0.025 00 g·mL−1, 15.67 mm at a concentration of 0.012 5 0g·mL−1, 10.00 mm at a concentration of 0.050 00 g·mL−1, and 6.67 mm at a concentration of 0.100 00 g·mL−1, respectively. Conclusion The natural preservative prepared by the newly developed extraction method showed strong in vitro antimicrobial effect, and the optimized process could be upscaled to fully utilize the bamboo sawdust. -
表 1 Box-Behnken试验设计的因素及水平
Table 1. Factors and levels of Box-Behnken experimental design
水平
Level提取温度
Extraction temperature/℃液料比
Solvent-to-substrate ratio/(mL:g)提取时间
Extraction time/h−1 80 15∶1 1 0 90 20∶1 2 1 100 25∶1 3 表 2 响应面试验设计组合及结果
Table 2. Design combinations and results of response surface test
试验号
Test numberA提取温度
Extraction temperature/℃B液料比
Solvent-to-substrate ratio/(mL:g)C提取时间
Extraction time/h抑菌圈直径 Inhibitory zone diameter/mm 大肠杆菌
E. coli金黄色葡萄球菌
S. aureus枯草芽孢杆菌
B. subtilis黑曲霉
A. niger平均值
Average1 80 15∶1 2 3.75 6.79 2.50 3.21 4.06 2 100 15∶1 2 2.82 3.42 6.59 4.21 4.26 3 80 25∶1 2 4.24 7.41 5.38 3.58 5.15 4 100 25∶1 2 3.22 2.80 4.80 2.19 3.25 5 80 20∶1 1 3.50 8.56 1.88 2.70 4.16 6 100 20∶1 1 1.20 2.02 2.75 1.26 1.81 7 80 20∶1 3 4.58 8.96 3.02 3.76 5.08 8 100 20∶1 3 3.82 4.41 5.56 3.41 4.30 9 90 15∶1 1 2.52 3.86 4.00 2.42 3.20 10 90 25∶1 1 3.15 4.02 4.22 1.78 3.29 11 90 15∶1 3 5.49 6.54 6.78 3.92 5.68 12 90 25∶1 3 5.86 7.64 8.42 3.60 6.38 13 90 20∶1 2 8.75 16.02 10.51 7.25 10.63 14 90 20∶1 2 9.75 14.03 11.00 7.47 10.56 15 90 20∶1 2 7.75 14.98 10.03 7.01 9.94 16 90 20∶1 2 9.25 15.54 10.35 7.34 10.62 17 90 20∶1 2 9.15 16.40 9.90 7.21 10.67 表 3 响应面方差分析
Table 3. Variance analysis of response surfaces
差异来源
Source平方和
Sun of quares自由度
Degree of freedom均方
Mean squareF值
F valueP值
P value模型 Model 154.75 9 17.19 94.18 <0.000 1** A-提取温度Extraction temperature 2.92 1 2.92 15.97 0.005 2** B-液料比Solvent-to-substrate ratio 0.095 1 0.095 0.52 0.494 9 C-提取时间Extraction time 10.08 1 10.08 55.21 0.000 1** AB 1.1 1 1.1 6.04 0.043 6* AC 0.62 1 0.62 3.38 0.108 8 BC 0.093 1 0.093 0.51 0.498 4 A2 53.12 1 53.12 290.98 <0.000 1** B2 31.89 1 31.89 174.67 <0.000 1** C2 40.32 1 40.32 220.85 <0.000 1** 残差 Residual 1.28 7 0.18 失拟项 Lack of fit 0.9 3 0.3 3.2 0.145 5 纯误差 Pure error 0.38 4 0.094 总和 Total 156.03 16 注:*表示显著差异,P<0.05;**表示极显著差异,P<0.01。
Note: * P<0.05, the difference is significant at 0.05 level; ** P<0.01, the difference is significant at 0.01 level.表 4 最低抑菌浓度的测定
Table 4. Determination of minimal inhibitory concentration for peak antimicrobial effect
抑菌浓度
Concentration /g·mL−1抑菌圈直径 Inhibitory zone diameter/mm 大肠杆菌
E. coli金黄色葡萄球菌
S. aureus枯草芽孢杆菌
B. subtilis黑曲霉
A. niger0.200 00 5.24±0.83 8.06±0.62 7.64±0.85 4.06±0.72 0.100 00 4.38±0.77 6.42±0.81 5.32±0.76 1.04±0.18 0.050 00 2.18±0.22 5.02±0.57 2.14±0.35 0.00 0.025 00 1.15±0.14 3.02±0.42 0.00 0.00 0.012 50 0.00 1.04±0.15 0.00 0.00 0.006 25 0.00 0.00 0.00 0.00 空白对照 Blank control 0.00 0.00 0.00 0.00 -
[1] 吴协保, 吴健, 但新球, 等. 竹类资源在我国石漠化防治中的应用研究 [J]. 世界林业研究, 2015, 28(3):37−41.WU X B, WU J, DAN X Q, et al. Application research of bamboo resources on rockification control in China [J]. World Forestry Research, 2015, 28(3): 37−41.(in Chinese) [2] 辜夕容, 邓雪梅, 刘颖旎, 等. 竹废弃物的资源化利用研究进展 [J]. 农业工程学报, 2016, 32(1):236−242. doi: 10.11975/j.issn.1002-6819.2016.01.033GU X R, DENG X M, LIU Y N, et al. Review on comprehensive utilization of bamboo residues [J]. Transactions of the CSAE, 2016, 32(1): 236−242.(in Chinese) doi: 10.11975/j.issn.1002-6819.2016.01.033 [3] 李媛媛, 张双燕, 王传贵, 等. 毛竹采伐剩余物的化学成分、纤维形态及纸浆性能 [J]. 浙江农林大学学报, 2019, 36(2):219−226. doi: 10.11833/j.issn.2095-0756.2019.02.002LI Y Y, ZHANG S Y, WANG C G, et al. Chemical composition, fiber morphology, and pulping properties of logging residues in Phyllostachys edulis [J]. Journal of Zhejiang A & F University, 2019, 36(2): 219−226.(in Chinese) doi: 10.11833/j.issn.2095-0756.2019.02.002 [4] 苏秋丽, 蒋剑春, 冯君锋, 等. 竹屑加压液化制备甲基糖苷和酚类物质 [J]. 林产化学与工业, 2017, 37(6):81−88. doi: 10.3969/j.issn.0253-2417.2017.06.011SU Q L, JIANG J C, FENG J F, et al. Preparation of methyl glucoside and phenols from pressurized liquefaction of bamboo [J]. Chemistry and Industry of Forest Products, 2017, 37(6): 81−88.(in Chinese) doi: 10.3969/j.issn.0253-2417.2017.06.011 [5] WANG Y P, DAI L L, FAN L L, et al. Microwave-assisted catalytic fast co-pyrolysis of bamboo sawdust and waste tire for bio-oil production [J]. Journal of Analytical and Applied Pyrolysis, 2017, 123: 224−228. doi: 10.1016/j.jaap.2016.11.025 [6] 林艳, 房桂干, 邓拥军. 马来酸催化竹屑水解高收率制备戊糖的工艺研究 [J]. 现代化工, 2017, 37(2):95−98.LIN Y, FANG G G, DENG Y J. Preparation of pentose with high yield from bamboo sweeps catalyzed by maleic acid [J]. Modern Chemical Industry, 2017, 37(2): 95−98.(in Chinese) [7] JIN J W, WANG M Y, CAO Y C, et al. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals [J]. Bioresource Technology, 2017, 228: 218−226. doi: 10.1016/j.biortech.2016.12.103 [8] 冯培松, 吕剑明, 徐玮. 竹屑与煤混合制备活性炭的探讨 [J]. 广东化工, 2015, 42(18):70−71. doi: 10.3969/j.issn.1007-1865.2015.18.033FENG P S, Lü J M, XU W. Preparation of cativated carbon form the mixture which made of by bamboo sawdust and coal [J]. Guangdong Chemical Industry, 2015, 42(18): 70−71.(in Chinese) doi: 10.3969/j.issn.1007-1865.2015.18.033 [9] 蒋应梯, 潘炘, 庄晓伟, 等. 竹屑制汽油蒸气吸附和液相脱色的颗粒活性炭研究 [J]. 竹子研究汇刊, 2015, 34(1):54−58.JIANG Y T, PAN X, ZHUANG X W, et al. The preparation of granular activated carbon made of bamboo sawdust as gasoline vapor adsorbent and liquid decolorization [J]. Journal of Bamboo Research, 2015, 34(1): 54−58.(in Chinese) [10] 张健, 张微思, 龚长久, 等. 竹屑在香菇栽培中的应用 [J]. 中国食用菌, 2016, 35(5):17−20.ZHANG J, ZHANG W S, GONG C J, et al. Application of bamboo chips residues in the cultivation of Lentinula edodes [J]. Edible Fungi of China, 2016, 35(5): 17−20.(in Chinese) [11] 张雪, 李焱. 不同提取方法对竹屑多糖提取得率影响的研究 [J]. 广州化工, 2018, 46(5):88−90, 110.ZHANG X, LI Y. Study of effects of different extracting methods on extraction rate of polysaccharide from bamboo sawdust [J]. Guangzhou Chemical Industry, 2018, 46(5): 88−90, 110.(in Chinese) [12] 许子竞, 舒群威, 罗树常. 响应面法优化提取竹屑多糖的工艺研究 [J]. 食品研究与开发, 2017, 38(9):70−73, 117. doi: 10.3969/j.issn.1005-6521.2017.09.016XU Z J, SHU Q W, LUO S C. Optimization of the extraction technique of bamboo chip polysaccharide by response surface methodology [J]. Food Research and Development, 2017, 38(9): 70−73, 117.(in Chinese) doi: 10.3969/j.issn.1005-6521.2017.09.016 [13] 贾燕芳. 竹笋加工废弃物中纤维再生利用研究及产业链设计[D]. 杭州: 浙江大学, 2011.JIA Y F. Research on the utilization of fibers from bamboo shoots processing and recycling industry chain design[D].Hangzhou: Zhejiang University, 2011.(in Chinese) [14] 陈瑞, 朱圣东, 杨武, 等. 竹子化学成分的测定 [J]. 武汉工程大学学报, 2013, 35(2):57−59, 64. doi: 10.3969/j.issn.1674-2869.2013.02.012CHEN R, ZHU S D, YANG W, et al. Analysis of chemical components of bamboo [J]. Journal of Wuhan Institute of Technology, 2013, 35(2): 57−59, 64.(in Chinese) doi: 10.3969/j.issn.1674-2869.2013.02.012 [15] LEE Y S, LEE Y J, PARK S N. Synergistic antimicrobial effect of Lonicera japonica and Magnolia obovata extracts and potential as a plant-derived natural preservative [J]. Journal of Microbiology and Biotechnology, 2018, 28(11): 1814−1822. doi: 10.4014/jmb.1807.07042 [16] CALEJA C, BARROS L, PRIETO M A, et al. Development of a natural preservative obtained from male chestnut flowers: optimization of a heat-assisted extraction technique [J]. Food & Function, 2019, 10(3): 1352−1363. [17] KALEM I K, BHAT Z F, KUMAR S, et al. Preservative potential of Tinospora cordifolia, a novel natural ingredient for improved lipid oxidative stability and storage quality of chevon sausages [J]. Nutrition & Food Science, 2018, 48(4): 605−620. [18] 曹小燕, 杨海涛. 响应面法优化超声辅助提取荠菜多酚工艺及其抗氧活性研究 [J]. 食品工业科技, 2019, 40(2):223−228, 232.CAO X Y, YANG H T. Optimization of ultrasonic assisted extraction technology of polyphenol by response surface methodology from Capsella bursa-pastoris and its antioxidant activity [J]. Science and Technology of Food Industry, 2019, 40(2): 223−228, 232.(in Chinese) [19] 滕蓉. 鬼针草提取物抑菌及抗氧化活性研究[D]. 福州: 福建农林大学, 2013.TENG R. Study on antimicrobial and antioxidant activity of Bidens bipinnata extracts[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013.(in Chinese) [20] 倪向梅. 从竹叶中提取化妆品用防腐剂的研究[D]. 无锡: 江南大学, 2011.NI X M. The research on extracting cosmetics preservative from bamboo leaves[D]. Wuxi, China: Jiangnan University, 2011.(in Chinese) [21] 杨立芳, 刘洪存, 支媛, 等. 响应曲面法优化毛果鱼藤总生物碱的提取工艺及其抑菌活性 [J]. 中国实验方剂学杂志, 2016, 22(23):28−34.YANG L F, LIU H C, ZHI Y, et al. Optimization of extraction process and antibacterial activity of total alkaloids from Derris eriocarpa based on response surface method [J]. Chinese Journal of Experimental Traditional Medical Formulae, 2016, 22(23): 28−34.(in Chinese) [22] 陈佳丽, 王可, 赵敏, 等. 香辛料对烧鸡中腐败菌抑制效果的研究 [J]. 肉类工业, 2018(10):28−32. doi: 10.3969/j.issn.1008-5467.2018.10.008CHEN J L, WANG K, ZHAO M, et al. Study on the inhibitory effect of spice on spoilage bacteria in roast chicken [J]. Meat Industry, 2018(10): 28−32.(in Chinese) doi: 10.3969/j.issn.1008-5467.2018.10.008 [23] 田凤, 李晓, 崔宇倩, 等. 香辛料提取液对假单胞菌和葡萄球菌及热死环丝菌的抑菌研究 [J]. 北京农学院学报, 2017, 32(2):10−14.TIAN F, LI X, CUI Y Q, et al. Study on antibacterial activity of 7 spices on Pseudomonas, Staphylococcus and Brochothrix [J]. Journal of Beijing University of Agriculture, 2017, 32(2): 10−14.(in Chinese) [24] 郑思睿, 杨婷, 依木然·马瑞士, 等. 响应面法优化罗布麻多糖提取工艺及抗氧化活性研究 [J]. 食品研究与开发, 2018, 39(16):93−97. doi: 10.3969/j.issn.1005-6521.2018.16.017ZHENG S R, YANG T, Emran Maris, et al. Study on extraction and antioxidant activity of polysaccharides in Apocynum venetum by response surface methods [J]. Food Research and Development, 2018, 39(16): 93−97.(in Chinese) doi: 10.3969/j.issn.1005-6521.2018.16.017 [25] 赵强, 余四九, 王廷璞, 等. 响应面法优化秃疮花中生物碱提取工艺及抑菌活性研究 [J]. 草业学报, 2012, 21(4):206−214. doi: 10.11686/cyxb20120425ZHAO Q, YU S J, WANG T P, et al. Optimization of the extracting process for alkaloids from Dicranostigma leptopodum by response surface analysis and study on its antibacterial activity in vitro [J]. Acta Prataculturae Sinica, 2012, 21(4): 206−214.(in Chinese) doi: 10.11686/cyxb20120425 [26] 张彬, 谢明勇, 殷军艺, 等. 响应面分析法优化超声提取茶多糖工艺的研究 [J]. 食品科学, 2008, 29(9):234−238. doi: 10.3321/j.issn:1002-6630.2008.09.050ZHANG B, XIE M Y, YIN J Y, et al. Optimization of ultrasonic-assisted extraction conditions of tea polysaccharides by using response surface methodology [J]. Food Science, 2008, 29(9): 234−238.(in Chinese) doi: 10.3321/j.issn:1002-6630.2008.09.050 [27] 赖炘, 陈其兵. 竹叶提取物的化学成分及其生理功能研究进展 [J]. 福建林业科技, 2013, 40(1):214−220, 226. doi: 10.3969/j.issn.1002-7351.2013.01.48LAI X, CHEN Q B. The research progress of chemical composition and physiological function of extract of bamboo leaves [J]. Journal of Fujian Forestry Science and Technology, 2013, 40(1): 214−220, 226.(in Chinese) doi: 10.3969/j.issn.1002-7351.2013.01.48 [28] TSUCHIYA H, SATO M, MIYAZAKI T, et al. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus [J]. Journal of Ethnopharmacology, 1996, 50(1): 27−34. doi: 10.1016/0378-8741(96)85514-0 [29] 曾春晖, 杨柯, 徐明光, 等. 广西藤茶总黄酮对金黄色葡萄球菌抗菌机制研究 [J]. 中国实验方剂学杂志, 2013, 19(10):249−252.ZENG C H, YANG K, XU M G, et al. Antibacterial mechanisms of total flavonoids from Ampelopsis grossedentata on Staphylococcus aureus [J]. Chinese Journal of Experimental Traditional Medical Formulae, 2013, 19(10): 249−252.(in Chinese) [30] 范超, 张梅, 张晶. 天然防腐剂的研究进展 [J]. 食品工业, 2017, 38(10):200−203.FAN C, ZHANG M, ZHANG J. The research progress of natural preservatives [J]. The Food Industry, 2017, 38(10): 200−203.(in Chinese) [31] 梁倩, 刘蔚漪, 王芳, 等. 野龙竹竹叶中多酚含量及其抑菌活性 [J]. 林业科技开发, 2013, 27(3):112−114. doi: 10.3969/j.issn.1000-8101.2013.03.030LIANG Q, LIU W Y, WANG F, et al. A study on polyphenol content and antibacterial activities in leaves of Dendrocalamus semiscandens [J]. China Forestry Science and Technology, 2013, 27(3): 112−114.(in Chinese) doi: 10.3969/j.issn.1000-8101.2013.03.030 [32] 杨萍, 刘洪波, 潘佳佳, 等. 不同季节毛竹竹叶挥发油成分与抑菌效果比较研究 [J]. 核农学报, 2015, 29(2):313−320. doi: 10.11869/j.issn.100-8551.2015.02.0313YANG P, LIU H B, PAN J J, et al. Analysis of the components in leaves of Phyllostachys edulis harvested in four seasons and the anti-microbial effects of their essential oils [J]. Journal of Nuclear Agricultural Sciences, 2015, 29(2): 313−320.(in Chinese) doi: 10.11869/j.issn.100-8551.2015.02.0313 [33] 阮祥春, 黄媛媛, 赵德学, 等. 竹纤维提取物体外抗菌活性及提取方法的研究 [J]. 西北农林科技大学学报(自然科学版), 2015, 43(11):134−138.RUAN X C, HUANG Y Y, ZHAO D X, et al. Extraction methods and in vitro antibacterial activity of bamboo(Phyllostachys pubescens) fiber extracts [J]. Journal of Northwest A & F University(Natural Science Edition), 2015, 43(11): 134−138.(in Chinese)