Proteomes of Sheep Alveolar and Mouse Macrophages Infected by Mycoplasma ovipneumoniae
-
摘要:
目的 评估小鼠巨噬细胞系Raw 264.7替代绵羊肺泡巨噬细胞用于研究绵羊肺炎支原体(Mycoplasma ovipneumoniae, Mo)致病机制的可行性。 方法 从绵羊肺脏灌洗液中分离绵羊原代肺泡巨噬细胞,以绵羊原代肺泡巨噬细胞和小鼠巨噬细胞Raw 264.7细胞系为细胞模型,使用绵羊肺炎支原体Y98标准株分别感染(MOI=10)绵羊原代肺泡巨噬细胞和小鼠巨噬细胞Raw 264.7细胞系24 h后,通过蛋白质组学或定时荧光定量PCR检测Mo刺激后两种细胞中部分蛋白或基因的相对表达量。 结果 从肺中成功分离出绵羊原代肺泡巨噬细胞,经免疫荧光鉴定显示其带有巨噬细胞特异性表面抗原CD14;经Mo感染后,绵羊原代肺泡巨噬细胞和小鼠巨噬细胞Raw 264.7中FADD、IL-1β、NOS2及THBS1等基因的表达均发生显著变化,主要涉及Toll样受体信号通路、MAPK信号通路、自噬作用等生物过程且两种细胞各基因的相对表达变化趋势基本一致。 结论 本研究初步表明选用小鼠巨噬细胞Raw 264.7细胞系替代绵羊原代巨噬细胞进行与Mo的互作研究具有一定的可行性,可为简化Mo致病机制研究模型提供理论基础。 -
关键词:
- 绵羊肺炎支原体 /
- 绵羊肺泡巨噬细胞 /
- Raw 264.7细胞 /
- 细胞模型
Abstract:Objective Feasibility of using mouse macrophage cell line Raw 264.7 for studies on pathogenesis of Mycoplasma ovipneumoniae(Mo) on sheep was investigated by comparing the proteome changes taken place in both macrophages after an induced Mo infection. Method The primary alveolar macrophages from sheep lung tissue were isolated and used, along with Raw 264.7, for the study. Both macrophages were infected with a standard strain of Mo (MOI=10) for 24h prior to proteomic and RT-PCR analyses to compare the expressions on the target genes in them. Result The image of specific surface antigen CD14 shown on the cells obtained from the lung tissue confirmed the identity of the isolated sheep primary alveolar macrophages. After infected by Mo, both sheep and mouse macrophages showed a similar significant change pattern on the expressions of FADD, IL-1β, NOS2, and THBS1. These proteins are known to associated with the Toll-like receptor signaling pathway, MAPK signaling pathway, and autophagy in biological processes. Conclusion It appeared that Raw 264.7 could be satisfactorily used to substitute the sheep primary alveolar macrophage in a simulated system for studies on Mo pathogenesis to considerably simplify the process and save cost in conducting the experiments on sheep. -
Key words:
- Mycoplasma ovipneumoniae /
- sheep alveolar macrophages /
- Raw 264.7 /
- cell model
-
图 1 绵羊原代肺泡巨噬细胞的鉴定
注:A. 绵羊原代肺泡巨噬细胞形态学观察;B. 绵羊原代肺泡巨噬细胞的CD14免疫荧光鉴定(CD14:巨噬细胞特异性表面抗原;DAPI:细胞核;Merge: CD14与DAPI的重叠图)。
Figure 1. Identification of isolated sheep primary alveolar macrophage
Note: A: Morphology of sheep primary alveolar macrophages; B: Immunofluorescence identification of sheep primary alveolar macrophage by CD14 antibody (CD14: Macrophage specific surface antigen; DAPI: Nucleus; Merge: Overlap of CD14 and DAPI).
图 3 绵羊肺泡巨噬细胞感染Mo后相关分子的表达变化
注:A:绵羊原代肺泡巨噬细胞感染Mo后的蛋白聚类分析;B:Toll样受体信号通路中相关蛋白的表达差异;C:MAPK信号通路中相关蛋白的表达;D:ECM受体相互作用中相关蛋白的表达差异;E:自噬作用中相关蛋白的表达差异。***、**、*分别表示处理间在0.001、0.01、0.05水平差异显著。
Figure 3. Changes on expressions of target proteins in sheep alveolar macrophage infected by Mo
Note: A: Protein clusters in sheep alveolar macrophage infected by Mo; B: Expression change on protein related to Toll-like receptor signal pathway; C: Expression change on protein related to MAPK signal pathway; D: Expression change on protein related to ECM receptor interaction; E: Expression change on protein related to autophagy. *** P<0.001 vs. control; **0.001<P<0.01 vs. control; *0.01<P<0.05 vs. control.
图 4 小鼠巨噬细胞Raw 264.7感染Mo后相关分子的表达变化
注:A:Toll样受体信号通路中相关基因mRNA的表达差异;B:MAPK信号通路中相关基因mRNA的表达差异;C:ECM受体相互作用中相关基因mRNA的表达差异;D:自噬作用中相关基因mRNA的表达差异。***、**、*分别表示处理间在0.001、0.01、0.05水平差异显著。
Figure 4. Changes on expressions of target proteins in Raw 264.7 infected by Mo
Note: A: Expression change on mRNA related to Toll-like receptor signal pathway; B: Expression change on mRNA related to MAPK signal pathway; C: Expression change on mRNA related to ECM receptor interaction; D: Expression change on mRNA related to autophagy. *** P <0.001 vs. control; **0.001<P <0.01 vs. control; * 0.01<P <0.05 vs. control.
图 5 绵羊肺泡巨噬细胞和小鼠巨噬细胞感染Mo后相关分子表达变化的对比
注:A. 绵羊肺泡巨噬细胞感染Mo后相关分子的表达变化 B.小鼠巨噬细胞Raw 264.7感染Mo后相关分子的表达变化。橙色代表上调表达的基因,绿色代表下调表达的基因。
Figure 5. Expression changes on proteins in Mo-infected sheep alveolar macrophage vs. Mo-infected Raw 264.7
Note:A: Expression changes on proteins in sheep alveolar macrophage infected by Mo; B: Expression changes on proteins in Raw 264.7 infected by Mo. Orange color indicates upregulated genes, and green color downregulated genes.
-
[1] CARMICHAEL L E, ST GEORGE T D, SULLIVAN N D, et al. Isolation, propagation, and characterization studies of an ovine Mycoplasma responsible for proliferative interstitial pneumonia [J]. The Cornell Veterinarian, 1972, 62(4): 654−679. [2] BESSER T E, FRANCES CASSIRER E, HIGHLAND M A, et al. Bighorn sheep pneumonia: Sorting out the cause of a polymicrobial disease [J]. Preventive Veterinary Medicine, 2013, 108(2/3): 85−93. [3] BESSER T E, CASSIRER E F, POTTER K A, et al. Epizootic pneumonia of Bighorn sheep following experimental exposure to Mycoplasma ovipneumoniae [J]. PLoS One, 2014, 9(10): e110039. doi: 10.1371/journal.pone.0110039 [4] ABDEL HALIUM M M, SALIB F A, MAROUF S A, et al. Isolation and molecular characterization of Mycoplasma spp. in sheep and goats in Egypt [J]. Veterinary World, 2019, 12(5): 664−670. doi: 10.14202/vetworld.2019.664-670 [5] STIPKOVITS L, BELAK S, PALFI V, et al. Isolation of Mycoplasma ovipneumoniae from sheep with pneumonia [J]. Acta Vet Acad Sci Hung, 1975, 25(2-3): 267−273. [6] 王华, 杨发龙, 王永, 等. 山羊支原体性肺炎流行病学调查 [J]. 中国畜牧兽医, 2011, 38(1):210−214.WANG H, YANG F L, WANG Y, et al. Epidemiological investigation of caprine Mycoplasma pneumoniae in Sichuan Province [J]. China Animal Husbandry & Veterinary Medicine, 2011, 38(1): 210−214.(in Chinese) [7] GONÇALVES R, MARIANO I, NÚÑEZ A, et al. Atypical non-progressive pneumonia in goats [J]. The Veterinary Journal, 2010, 183(2): 219−221. doi: 10.1016/j.tvjl.2008.10.005 [8] ELLIOTT M R, KOSTER K M, MURPHY P S. Efferocytosis signaling in the regulation of macrophage inflammatory responses [J]. The Journal of Immunology, 2017, 198(4): 1387−1394. doi: 10.4049/jimmunol.1601520 [9] NIANG M, ROSENBUSCH R F, LOPEZ-VIRELLA J, et al. Expression of functions by normal sheep alveolar macrophages and their alteration by interaction with Mycoplasma ovipneumoniae [J]. Veterinary Microbiology, 1997, 58(1): 31−43. doi: 10.1016/S0378-1135(97)00141-7 [10] LUO H X, WU X X, XU Z K, et al. NOD2/c-Jun NH2-terminal kinase triggers Mycoplasma ovipneumoniae-induced macrophage autophagy[J]. Journal of Bacteriology, 2020, 202(20). DOI: 10.1128/jb.00689-19. [11] LI G, FAN L P, WANG Y Q, et al. High co-expression of TNF-α and CARDS toxin is a good predictor for refractory Mycoplasma pneumoniae pneumonia [J]. Molecular Medicine, 2019, 25: 38. [12] JIANG F, HE J Y, NAVARRO-ALVAREZ N, et al. Elongation factor Tu and heat shock protein 70 are membrane-associated proteins from Mycoplasma ovipneumoniae capable of inducing strong immune response in mice [J]. PLoS One, 2016, 11(8): e0161170. doi: 10.1371/journal.pone.0161170 [13] YANG M Y, MENG F Z, GAO M, et al. Cytokine signatures associate with disease severity in children with Mycoplasma pneumoniae pneumonia [J]. Scientific Reports, 2019, 9: 17853. doi: 10.1038/s41598-019-54313-9 [14] MARINARO M, GRECO G, TARSITANO E, et al. Changes in peripheral blood leucocytes of sheep experimentally infected with Mycoplasma agalactiae [J]. Veterinary Microbiology, 2015, 175(2/3/4): 257−264. [15] BAO J, WU Z, ISHFAQ M, et al. Comparison of experimental infection of normal and immunosuppressed chickens with Mycoplasma gallisepticum [J]. Journal of Comparative Pathology, 2020, 175: 5−12. doi: 10.1016/j.jcpa.2019.12.001 [16] LI X, ZHANG Y K, YIN B, et al. Toll-like receptor 2 (TLR2) and TLR4 mediate the Iga immune response induced by Mycoplasma hyopneumoniae [J]. Infection and Immunity, 2019, 88(1). DOI: 10.1128/iai.00697-19. [17] NAGHIB M, HATAM-JAHROMI M, NIKTAB M, et al. Mycoplasma pneumoniae and toll-like receptors: a mutual avenue [J]. Allergologia et Immunopathologia, 2018, 46(5): 508−513. doi: 10.1016/j.aller.2017.09.021 [18] ZHANG Y Y, MEI S F, ZHOU Y L, et al. TIPE2 negatively regulates Mycoplasma pneumonia-triggered immune response via MAPK signaling pathway [J]. Scientific Reports, 2017, 7: 13319. doi: 10.1038/s41598-017-13825-y [19] HWANG M H, DAMTE D, LEE J S, et al. Mycoplasma hyopneumoniae induces pro-inflammatory cytokine and nitric oxide production through NFκB and MAPK pathways in RAW264.7 cells [J]. Veterinary Research Communications, 2011, 35(1): 21−34. doi: 10.1007/s11259-010-9447-5 [20] LU Z Y, XIE D Y, CHEN Y, et al. TLR2 mediates autophagy through ERK signaling pathway in Mycoplasma gallisepticum-infected RAW264.7 cells [J]. Molecular Immunology, 2017, 87: 161−170. doi: 10.1016/j.molimm.2017.04.013