Transcriptome Changes of Citrus grandis Seedlings in Response to Acid Rain Stress
-
摘要:
目的 研究琯溪蜜柚受酸雨胁迫的内在分子机制,为琯溪蜜柚科学种植提供基础资料,也为酸雨逆境生理提供理论基础。 方法 以模拟酸雨胁迫24 h的琯溪蜜柚叶片进行Illumina HiSeq TM 4000 高通量转录组测序分析,将组装得到的基因在参考基因组、Nr和 KEGG 数据库进行比对;利用 FDR 与 log2(FC)来筛选差异基因,筛选条件为 FDR<0.05且|log2(FC)|>1,将筛选的差异基因做GO和KEGG富集分析。 结果 模拟酸雨喷淋24 h后,琯溪蜜柚嫩叶出现明显块状伤斑;共得到21497个基因,全部得到注释,与对照相比,酸雨处理组中有879个基因显著上调,588个基因显著下调;筛选出样本中前50个DEGs(差异基因),均为上调表达基因,大部分涉及代谢途径、次生代谢、苯丙基类丙烷生物合成和萜类物质合成等相关基因。GO富集分析表明差异表达基因主要位于细胞外区域;执行分子功能中催化剂活性是最为显著富集的GO term,其次是氧化还原酶活性;生物过程中差异表达基因最显著的GO term是DNA 代谢过程。KEGG富集分析表明DNA复制是差异表达基因中最显著富集的Pathway,其次是次生代谢的生物合成,再次是苯丙素类合成途径。对次生代谢合成途径中4个差异表达基因[POD同工酶cg3g018770和cg2g001440、肉桂酰辅酶A还原酶(CCR)同工酶cg1g021310、4-香豆酸-辅酶a连接酶(4CL)同工酶cg3g029290]进行PCR荧光定量分析,验证了转录组数据的可靠性。 结论 琯溪蜜柚对酸雨耐性较强,对酸雨胁迫的响应是多基因参与、多生物过程协同调控的过程,次生代谢的调节可能是应对酸雨胁迫的主要方式。 Abstract:Objective Molecular mechanisms of Citrus grandis (L.) Osbeck. cv. Guanximiyou in response to simulated acid rain stress were investigated. Method The llumina HiSeq 4000 system, a high-throughput transcriptome sequencing technology, was applied to reveal the differential expressions of the grapefruit transcriptome after a 24 h simulated acid rain treatment. The unigenes obtained were compared to the Nr and KEGG database. Abundance of gene expression of the samples were screened according to transcriptome data by using PRKM method. Differentially expressed genes (DEGs) among the treated samples were estimated by referring to the standard of FDR ≤ 0.05 and |log2FC| ≥ 1. Functions and pathways of those DEGs were analyzed using the Gene Ontology (GO) and KEGG pathway database. Result Significant lumpy lesions began to appear on the young grapefruit leaves 24 h after the artificial acid rain spray with 21 497 fully described unigenes obtained. In comparison to control, 879 of the genes were significantly upregulated and 588 downregulated. The top 50 DEGs were all in the upregulated category and mainly associated with metabolic pathways, secondary metabolism, phenylpropyl propane biosynthesis, or terpenoid biosynthesis. The GO enrichment analysis showed the DEGs being largely located in extracellular region and, among various molecular functions, the catalytic activity being the most significantly enriched, followed by oxidoreductase activity, while the DNA metabolism being the most significant of DEGs in the GO term on biological process. The KEGG enrichment analysis indicated that DNA replication was the most significant enrichment pathway, followed by secondary metabolic biosynthesis, and lignin synthesis. The PCR fluorescence quantitative analysis on the 4 DEGs in the secondary metabolic biosynthesis pathway [i.e., POD isozyme cg3g018770 and cg2g001440, cinnamyl coenzyme A reductase (CCR) isozyme cg1g021310, and 4-coumaric acid-coenzyme A ligase (4CL) isozyme cg3g029290] confirmed that the acid rain stress indeed significantly affected the expressions of these genes. Conclusion C. grandis (L.) Osbeck. cv. Guanximiyou was strongly tolerant to acid rain. The stress response of the plants involved numerous genes regulated by various collaborative biological processes. Among them, the regulation of secondary metabolism appeared to play a major role in coping with acid rain stress by the plant. -
图 3 KEEP 代谢途径中最为显著富集的前20条通路
注:Rich factor指差异表达的基因中位于该pathway条目的基因数目与所有基因中位于该pathway条目的基因总数的比值, Rich factor越大,表示富集的程度越高。Q value是做过多重假设检验校正之后的P value,取值范围为0到1,越接近于零,表示富集越显著。
Figure 3. Top 20 enrichment pathways as analyzed by KEEP
Note: Rich factor refers to ratio of number of DEGs located in pathway entry to number of all genes located in same pathway entry; high rich factor indicates high degree of enrichment. Q value is the P value after multiple hypothesis testing and corrections which ranges from 0 to 1 with 0 being most significantly enriched.
表 1 qPCR 反应体系
Table 1. qPCR reaction system
qPCR反应体系
qPCR reaction system体积
Volume/μlqPCR反应混合物 qPCR Master Mix 10 PCR正向引物PCR Forward Primer/(10 mol·L−1) 0.4 PCR反向引物 PCR Reverse Primer/(10 mol·L−1) 0.4 cDNA模板 cDNA template 4 ddH2O 5.2 合计 Total 20 表 2 引物序列
Table 2. Primer sequence
基因
Gene序列
SequenceCg3g024100 F 5′CAATGTGAAGTCCAGCGTGTG3′ R 5′AGCCCTCGTAGTTCTCGTCA3′ Cg3g018770 F 5′CATTTACCAATCGCCTCTATCC3′ R 5′ACCCCTGTCGGTTCATCAAGT3′ Cg2g001440 F 5′GGCAATCCAGACCCAACACT3′ R 5′AATGGCAGCGGTATCGGC3′ Cg1g021310 F 5′GTTGACGAACATTGCTGGAGT3′ R 5′GCAGCAATGTCCCTATCACC3′ Cg3g029290 F 5′CGAAGTAGAGTCCCTCAAGCA3′ R 5′TGTCACCAGTATGAAGCCAACC3′ 表 3 有效数据评估统计
Table 3. Statistics of valid data
样本
Sample处理后
序列数据
Clean
Data/bp过滤后的
序列数据
HQ Clean
Data/bp处理后
序列数
Clean Reads
Num/条过滤后的序列
HQ Clean ReadsQ20 Q30 GC 数量
Number/条占比
Ratio/%数量
Number/bp占比
Ratio/%数量
Number/bp占比
Ratio/%数量
Number/bp占比
Ratio/ %CK-1 7361352600 7111541211 49075684 48127600 98.07 6999438082 98.42 6769749153 95.19 3153041858 44.34 CK-2 8465603100 8202153477 56437354 55469140 98.28 8080142163 98.51 7826038154 95.41 3620789302 44.14 CK-3 8683275600 8408343801 57888504 56867832 98.24 8281909562 98.5 8019114646 95.37 3726434942 44.32 T-1 8203212900 7937070962 54688086 53695546 98.19 7816272312 98.48 7566409577 95.33 3522622180 44.38 T-2 9249897000 8926570988 61665980 60549386 98.19 8792579583 98.5 8514792020 95.39 3962645890 44.39 T-3 7880490300 7621577079 52536602 51567848 98.16 7503238757 98.45 7259492038 95.25 3369836120 44.21 注:1.Q20-碱基质量 ≥20的碱基;2.Q30-碱基质量 ≥30的碱基;3.GC-鸟嘌呤和胞嘧啶;4.CK-1、CK-2、CK-3为清水对照3个重复,T-1、T-2、T-3为pH2.5模拟酸雨喷淋的3个重复,表4、5同,图2、4同。
Note: 1. Q20- Base quality≥20. 2. Q30- Base quality≥30.3. GC- Guanine and Cytosine.4.CK-1, ck-2 and ck-3 are three repetitions of clear water control, and T-1, T-2 and T-3 are three repetitions of pH2.5 simulated acid rain spray.The same as Tab. 4 and. The same as Fig.2 and 4.表 4 过滤后的序列与核糖体RNA 的比对统计
Table 4. Statistics of HQ-clean data and rRNA
样品
Sample过滤后的序列数
HQ Clean Reads
Number/条比对上rRNA的序列
Mapped Reads未比对上rRNA的序列
Unmapped Reads数量
Number/条占比
Ratio/%数量
Number/条占比
Ratio/%CK-1 48127600 370958 0.77 47756642 99.23 CK-2 55469140 435276 0.78 55033864 99.22 CK-3 56867832 597704 1.05 56270128 98.95 T-1 53695546 404974 0.75 53290572 99.25 T-2 60549386 595394 0.98 59953992 99.02 T-3 51567848 327954 0.64 51239894 99.36 表 5 比对核糖体后得到的未标记序列与参考基因组的比对统计
Table 5. Statistics of unmapped reads and reference genome
样品
Sample序列总数
Total reads/条唯一比对上的序列
Unique mapped reads多处比对上的序列
Multiple mapped reads数量
Number/条占比
Ratio/%数量
Number/条占比
Ratio/%CK-1 47756642 41591814 87.09 672956 1.41 CK-2 55033864 47903535 87.04 849190 1.54 CK-3 56270128 48813881 86.75 868458 1.54 T-1 53290572 46327128 86.93 743356 1.39 T-2 59953992 51103454 85.24 834008 1.39 T-3 51239894 44511502 86.87 705832 1.38 表 6 差异基因GO功能分类
Table 6. The Go functional classification of the differential expression
本体
Ontology分类
Class上调表达
基因数量
Up-regulated
DEG number下调表达
基因数量
Down-regulated
DEG number本体
Ontology分类
Class上调表达
基因数量
Up-regulated
DEG number下调表达
基因数量
Down-regulated
DEG number生物过程
Biological
Process单一的生物过程
single-organism process90 45 分子功能
Molecular Function催化剂活性
catalytic activity163 81 细胞杀伤
cell killing1 0 转运因子活性
transporter activity19 3 刺激应答
response to stimulus24 7 信号转导过程
signal transducer activity5 2 细胞成分组织
cellular component organization or biogenesis8 12 分子功能调节
molecular function regulator1 1 免疫系统过程
immune system process2 0 核苷酸结合转录因子活性
nucleic acid binding transcription factor activity3 0 多组织过程/多机体过程
multi-organism process5 0 结合/结合剂活性
binding74 54 定位
localization29 5 结构分子活性
structural molecule activity1 0 再生
reproduction4 1 细胞成分
Cellular Component细胞间区域
extracellular region6 2 生长
growth0 1 细胞连丝
cell junction4 0 生物调控
biological regulation13 7 细胞膜要素
membrane part36 5 再生过程
reproductive process2 0 细胞膜 membrane 38 6 多细胞组织过程
multicellular organismal process1 2 膜结合腔体
membrane-enclosed lumen0 2 发育过程
developmental process2 2 细胞器
organelle11 23 细胞过程
cellular process78 64 细胞
cell23 26 信号
signaling2 2 细胞要素
cell part23 26 代谢过程
metabolic process116 68 大分子复合物
macromolecular complex3 8 细胞器要素
organelle part2 4 -
[1] 林燕金, 林旗华, 姜翠翠, 等. 福建省柚类产业发展现状及对策 [J]. 东南园艺, 2014, 2(5):39−42. doi: 10.3969/j.issn.1004-6089.2014.05.009LIN Y J, LIN Q H, JIANG C C, et al. Industry status and countermeasures of pomelo industry in Fujian Province [J]. Southeast Horticulture, 2014, 2(5): 39−42.(in Chinese) doi: 10.3969/j.issn.1004-6089.2014.05.009 [2] 王梨嬛, 潘永娟, 杨莉, 等. ‘琯溪蜜柚’荧光定量PCR内参基因的筛选 [J]. 果树学报, 2013, 30(1):48−54.WANG L H, PAN Y J, YANG L, et al. Validation of internal reference genes for qRT-PCR normalization in Guanxi Sweet Pummelo(Citrus grandis) [J]. Journal of Fruit Science, 2013, 30(1): 48−54.(in Chinese) [3] 赵卫红. 福建省主要城市降水离子特征及沉降量现状分析 [J]. 亚热带资源与环境学报, 2008, 3(3):19−24. doi: 10.3969/j.issn.1673-7105.2008.03.004ZHAO W H. On characteristics of precipitation ion and current sedimentation situation in main cities of Fujian Province [J]. Journal of Subtropical Resources and Environment, 2008, 3(3): 19−24.(in Chinese) doi: 10.3969/j.issn.1673-7105.2008.03.004 [4] 钱笑杰, 林晓兰, 肖靖, 等. 福建果园土壤pH值、养分关系与土壤肥力质量评价研究: 以福建省漳州市平和县琯溪蜜柚园地为例 [J]. 福建热作科技, 2017, 42(1):9−15. doi: 10.3969/j.issn.1006-2327.2017.01.003QIAN X J, LIN X L, XIAO J, et al. Evaluation research between soil pH, nutrition and soil fertility in Fujian orchard [J]. Fujian Science & Technology of Tropical Crops, 2017, 42(1): 9−15.(in Chinese) doi: 10.3969/j.issn.1006-2327.2017.01.003 [5] 任晓巧, 章家恩, 向慧敏, 等. 酸雨对植物地上部生理生态的影响研究进展与展望 [J]. 应用与环境生物学报, 2021, 27(5):1−10.REN X Q, ZHANG J E, XIANG H M, et al. Research advances and prospects for effects of acid rain on the aboveground physiology of plants and the related alleviation countermeasures [J]. Chinese Journal of Applied & Environmental Biology, 2021, 27(5): 1−10.(in Chinese) [6] HU W J, CHEN J, LIU T W, et al. Proteome and calcium-related gene expression in Pinus massoniana needles in response to acid rain under different calcium levels [J]. Plant and Soil, 2014, 380: 285−303. doi: 10.1007/s11104-014-2086-9 [7] 宋晓梅, 曹向阳. 模拟酸雨对不同园林植物叶片生理生态特性的影响 [J]. 水土保持研究, 2017, 24(2):365−370.SONG X M, CAO X Y. Effect of simulated acid rain on the physiological and ecological characteristics of different garden plants [J]. Research of Soil and Water Conservation, 2017, 24(2): 365−370.(in Chinese) [8] YAN P, WU L Q, WANG D H, et al. Soil acidification in Chinese tea plantations [J]. Science of the Total Environment, 2020, 715: 1−7. [9] LIU T W, NIU L, FU B, et al. A transcriptomic study reveals differentially expressed genes and pathways respond to simulated acid rain in Arabidopsis thaliana [J]. Genome, 2013, 56(1): 49−60. doi: 10.1139/gen-2012-0090 [10] 俞翰炳. 模拟酸雨对拟南芥抗病性的影响及机理探究[D]. 杭州: 杭州师范大学, 2015.YU H B. Studies on effects and mechanisms of simulated acid rain on Arabidopsis thaliana tolerance to disease[D]. Hangzhou: Hangzhou Normal University, 2015. (in Chinese). [11] 牛力. 模拟酸雨对拟南芥某些生理特性和基因表达谱的影响[D]. 厦门: 厦门大学, 2009.NIU L. Effects of simulated acid rain on some physiological characteristics and gene expression profiles of Arabidopsis thaliana[D]. Xiamen, China: Xiamen University, 2009. (in Chinese). [12] 张琼, 陆銮眉, 戴清霞, 等. 模拟酸雨对‘琯溪蜜柚’叶片抗氧化酶活性和光合作用的影响 [J]. 果树学报, 2018, 35(7):828−835.ZHANG Q, LU L M, DAI Q X, et al. Effects of acid rain on the leaves antioxidase activity and photosynthesis of Citrus Grandis(L.) Osbeck. ‘Guanximiyou’ seedlings [J]. Journal of Fruit Science, 2018, 35(7): 828−835.(in Chinese) [13] KIM D, PERTEA G, TRAPNELL C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions [J]. Genome Biology, 2013, 14(4): R36. doi: 10.1186/gb-2013-14-4-r36 [14] TRAPNELL C, WILLIAMS B A, PERTEA G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation [J]. Nature Biotechnology, 2010, 28(5): 511−515. doi: 10.1038/nbt.1621 [15] 任晓巧, 章家恩, 向慧敏, 等. 酸雨对植物地上部生理生态的影响研究进展与展望[J/OL]. 应用与环境生物学报: 1-12 [2021-04-25]. https://doi.org/10.19675/j.cnki.1006-687x.2020.07054.REN X Q, ZHANG J, XIANG H M, et al. Research advances and prospects for effects of acid rain on the aboveground physiology of plants and the related alleviation countermeasures [J/OL]. Chinese Journal of Applied and Environmental Biology: 1−12 [2021-04-25]. https://doi.org/10.19675/j.cnki.1006-687x.2020.07054. (in Chinese). [16] 张利霞, 郝国宝, 常青山, 等. 模拟酸雨胁迫对夏枯草抗氧化酶活性和光合参数的影响 [J]. 中国草地学报, 2020, 42(4):56−61.ZHANG L X, HAO G B, CHANG Q S, et al. Antioxidant capacity and photosynthetic characteristics of Prunella vulgaris seedlings in response to simulated acid rain stress [J]. Chinese Journal of Grassland, 2020, 42(4): 56−61.(in Chinese) [17] 马永佳, 梁婵娟. 外源钙对模拟酸雨胁迫下水稻质膜组分和钙形态的调节 [J]. 农业环境科学学报, 2021, 40(6): 1159-1166. MA Y J, LIANG C J. Regulation of exogenous calcium on plasma membrane compositions and calcium forms of rice roots under simulated acid rain stress [J]. Journal of Agro-Environment Science, 2021, 40(6): 1159−1166. https://kns.cnki.net/kcms/detail/12.1347. [18] 刘洪博, 刘新龙, 苏火生, 等. 干旱胁迫下割手密根系转录组差异表达分析 [J]. 中国农业科学, 2017, 50(6):1167−1178. doi: 10.3864/j.issn.0578-1752.2017.06.017LIU H B, LIU X L, SU H S, et al. Transcriptome difference analysis of Saccharum spontaneum roots in response to drought stress [J]. Scientia Agricultura Sinica, 2017, 50(6): 1167−1178.(in Chinese) doi: 10.3864/j.issn.0578-1752.2017.06.017 [19] 阎秀峰. 植物次生代谢生态学 [J]. 植物生态学报, 2001, 25(5):639−640, 622. doi: 10.3321/j.issn:1005-264X.2001.05.021YAN X F. Ecology of plant secondary metabolism [J]. Acta Phytoecologica Sinica, 2001, 25(5): 639−640, 622.(in Chinese) doi: 10.3321/j.issn:1005-264X.2001.05.021