• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酸雨胁迫下琯溪蜜柚叶片转录组差异表达分析

张琼 陆銮眉 朱丽霞

张琼,陆銮眉,朱丽霞. 酸雨胁迫下琯溪蜜柚叶片转录组差异表达分析 [J]. 福建农业学报,2021,36(7):750−758 doi: 10.19303/j.issn.1008-0384.2021.07.003
引用本文: 张琼,陆銮眉,朱丽霞. 酸雨胁迫下琯溪蜜柚叶片转录组差异表达分析 [J]. 福建农业学报,2021,36(7):750−758 doi: 10.19303/j.issn.1008-0384.2021.07.003
ZHANG Q, LU L M, ZHU L X. Transcriptome Changes of Citrus grandis Seedlings in Response to Acid Rain Stress [J]. Fujian Journal of Agricultural Sciences,2021,36(7):750−758 doi: 10.19303/j.issn.1008-0384.2021.07.003
Citation: ZHANG Q, LU L M, ZHU L X. Transcriptome Changes of Citrus grandis Seedlings in Response to Acid Rain Stress [J]. Fujian Journal of Agricultural Sciences,2021,36(7):750−758 doi: 10.19303/j.issn.1008-0384.2021.07.003

酸雨胁迫下琯溪蜜柚叶片转录组差异表达分析

doi: 10.19303/j.issn.1008-0384.2021.07.003
基金项目: 福建省自然科学基金项目(2020J01810)
详细信息
    作者简介:

    张琼(1980−),女,博士研究生,副教授,研究方向:植物生态学(E-mail:349369029@qq.com

  • 中图分类号: S 666.3;Q 948.1

Transcriptome Changes of Citrus grandis Seedlings in Response to Acid Rain Stress

  • 摘要:   目的  研究琯溪蜜柚受酸雨胁迫的内在分子机制,为琯溪蜜柚科学种植提供基础资料,也为酸雨逆境生理提供理论基础。  方法  以模拟酸雨胁迫24 h的琯溪蜜柚叶片进行Illumina HiSeq TM 4000 高通量转录组测序分析,将组装得到的基因在参考基因组、Nr和 KEGG 数据库进行比对;利用 FDR 与 log2(FC)来筛选差异基因,筛选条件为 FDR<0.05且|log2(FC)|>1,将筛选的差异基因做GO和KEGG富集分析。  结果  模拟酸雨喷淋24 h后,琯溪蜜柚嫩叶出现明显块状伤斑;共得到21497个基因,全部得到注释,与对照相比,酸雨处理组中有879个基因显著上调,588个基因显著下调;筛选出样本中前50个DEGs(差异基因),均为上调表达基因,大部分涉及代谢途径、次生代谢、苯丙基类丙烷生物合成和萜类物质合成等相关基因。GO富集分析表明差异表达基因主要位于细胞外区域;执行分子功能中催化剂活性是最为显著富集的GO term,其次是氧化还原酶活性;生物过程中差异表达基因最显著的GO term是DNA 代谢过程。KEGG富集分析表明DNA复制是差异表达基因中最显著富集的Pathway,其次是次生代谢的生物合成,再次是苯丙素类合成途径。对次生代谢合成途径中4个差异表达基因[POD同工酶cg3g018770和cg2g001440、肉桂酰辅酶A还原酶(CCR)同工酶cg1g021310、4-香豆酸-辅酶a连接酶(4CL)同工酶cg3g029290]进行PCR荧光定量分析,验证了转录组数据的可靠性。  结论  琯溪蜜柚对酸雨耐性较强,对酸雨胁迫的响应是多基因参与、多生物过程协同调控的过程,次生代谢的调节可能是应对酸雨胁迫的主要方式。
  • 图  1  模拟酸雨喷淋对叶片伤害表型

    Figure  1.  Phenotype effect of water or acid rain spraying on leaves

    图  2  样本表达量的层级聚类

    Figure  2.  Hierarchical cluster diagram on expression of sample

    图  3  KEEP 代谢途径中最为显著富集的前20条通路

    注:Rich factor指差异表达的基因中位于该pathway条目的基因数目与所有基因中位于该pathway条目的基因总数的比值, Rich factor越大,表示富集的程度越高。Q value是做过多重假设检验校正之后的P value,取值范围为0到1,越接近于零,表示富集越显著。

    Figure  3.  Top 20 enrichment pathways as analyzed by KEEP

    Note: Rich factor refers to ratio of number of DEGs located in pathway entry to number of all genes located in same pathway entry; high rich factor indicates high degree of enrichment. Q value is the P value after multiple hypothesis testing and corrections which ranges from 0 to 1 with 0 being most significantly enriched.

    图  4  POD同工酶,CCR同工酶和4CL同工酶基因相对表达量

    Figure  4.  Relative expressions of POD, CCR, and 4CL isoenzyme genes

    表  1  qPCR 反应体系

    Table  1.   qPCR reaction system

    qPCR反应体系
    qPCR reaction system
    体积
    Volume/μl
    qPCR反应混合物 qPCR Master Mix 10
    PCR正向引物PCR Forward Primer/(10 mol·L−1 0.4
    PCR反向引物 PCR Reverse Primer/(10 mol·L−1 0.4
    cDNA模板 cDNA template 4
    ddH2O 5.2
    合计 Total 20
    下载: 导出CSV

    表  2  引物序列

    Table  2.   Primer sequence

    基因
    Gene
    序列
    Sequence
    Cg3g024100 F 5′CAATGTGAAGTCCAGCGTGTG3′
    R 5′AGCCCTCGTAGTTCTCGTCA3′
    Cg3g018770 F 5′CATTTACCAATCGCCTCTATCC3′
    R 5′ACCCCTGTCGGTTCATCAAGT3′
    Cg2g001440 F 5′GGCAATCCAGACCCAACACT3′
    R 5′AATGGCAGCGGTATCGGC3′
    Cg1g021310 F 5′GTTGACGAACATTGCTGGAGT3′
    R 5′GCAGCAATGTCCCTATCACC3′
    Cg3g029290 F 5′CGAAGTAGAGTCCCTCAAGCA3′
    R 5′TGTCACCAGTATGAAGCCAACC3′
    下载: 导出CSV

    表  3  有效数据评估统计

    Table  3.   Statistics of valid data

    样本
    Sample
    处理后
    序列数据
    Clean
    Data/bp
    过滤后的
    序列数据
    HQ Clean
    Data/bp
    处理后
    序列数
    Clean Reads
    Num/条
    过滤后的序列
    HQ Clean Reads
    Q20Q30 GC
    数量
    Number/条
    占比
    Ratio/%
    数量
    Number/bp
    占比
    Ratio/%
    数量
    Number/bp
    占比
    Ratio/%
    数量
    Number/bp
    占比
    Ratio/ %
    CK-1 7361352600 7111541211 49075684 48127600 98.07 6999438082 98.42 6769749153 95.19 3153041858 44.34
    CK-2 8465603100 8202153477 56437354 55469140 98.28 8080142163 98.51 7826038154 95.41 3620789302 44.14
    CK-3 8683275600 8408343801 57888504 56867832 98.24 8281909562 98.5 8019114646 95.37 3726434942 44.32
    T-1 8203212900 7937070962 54688086 53695546 98.19 7816272312 98.48 7566409577 95.33 3522622180 44.38
    T-2 9249897000 8926570988 61665980 60549386 98.19 8792579583 98.5 8514792020 95.39 3962645890 44.39
    T-3 7880490300 7621577079 52536602 51567848 98.16 7503238757 98.45 7259492038 95.25 3369836120 44.21
    注:1.Q20-碱基质量 ≥20的碱基;2.Q30-碱基质量 ≥30的碱基;3.GC-鸟嘌呤和胞嘧啶;4.CK-1、CK-2、CK-3为清水对照3个重复,T-1、T-2、T-3为pH2.5模拟酸雨喷淋的3个重复,表4、5同,图2、4同。
    Note: 1. Q20- Base quality≥20. 2. Q30- Base quality≥30.3. GC- Guanine and Cytosine.4.CK-1, ck-2 and ck-3 are three repetitions of clear water control, and T-1, T-2 and T-3 are three repetitions of pH2.5 simulated acid rain spray.The same as Tab. 4 and. The same as Fig.2 and 4.
    下载: 导出CSV

    表  4  过滤后的序列与核糖体RNA 的比对统计

    Table  4.   Statistics of HQ-clean data and rRNA

    样品
    Sample
    过滤后的序列数
    HQ Clean Reads
    Number/条
    比对上rRNA的序列
    Mapped Reads
    未比对上rRNA的序列
    Unmapped Reads
    数量
    Number/条
    占比
    Ratio/%
    数量
    Number/条
    占比
    Ratio/%
    CK-1 48127600 370958 0.77 47756642 99.23
    CK-2 55469140 435276 0.78 55033864 99.22
    CK-3 56867832 597704 1.05 56270128 98.95
    T-1 53695546 404974 0.75 53290572 99.25
    T-2 60549386 595394 0.98 59953992 99.02
    T-3 51567848 327954 0.64 51239894 99.36
    下载: 导出CSV

    表  5  比对核糖体后得到的未标记序列与参考基因组的比对统计

    Table  5.   Statistics of unmapped reads and reference genome

    样品
    Sample
    序列总数
    Total reads/条
    唯一比对上的序列
    Unique mapped reads
    多处比对上的序列
    Multiple mapped reads
    数量
    Number/条
    占比
    Ratio/%
    数量
    Number/条
    占比
    Ratio/%
    CK-1 47756642 41591814 87.09 672956 1.41
    CK-2 55033864 47903535 87.04 849190 1.54
    CK-3 56270128 48813881 86.75 868458 1.54
    T-1 53290572 46327128 86.93 743356 1.39
    T-2 59953992 51103454 85.24 834008 1.39
    T-3 51239894 44511502 86.87 705832 1.38
    下载: 导出CSV

    表  6  差异基因GO功能分类

    Table  6.   The Go functional classification of the differential expression

    本体
    Ontology
    分类
    Class
    上调表达
    基因数量
    Up-regulated
    DEG number
    下调表达
    基因数量
    Down-regulated
    DEG number
    本体
    Ontology
    分类
    Class
    上调表达
    基因数量
    Up-regulated
    DEG number
    下调表达
    基因数量
    Down-regulated
    DEG number
    生物过程
    Biological
    Process
    单一的生物过程
    single-organism process
    90 45 分子功能
    Molecular Function
    催化剂活性
    catalytic activity
    163 81
    细胞杀伤
    cell killing
    1 0 转运因子活性
    transporter activity
    19 3
    刺激应答
    response to stimulus
    24 7 信号转导过程
    signal transducer activity
    5 2
    细胞成分组织
    cellular component organization or biogenesis
    8 12 分子功能调节
    molecular function regulator
    1 1
    免疫系统过程
    immune system process
    2 0 核苷酸结合转录因子活性
    nucleic acid binding transcription factor activity
    3 0
    多组织过程/多机体过程
    multi-organism process
    5 0 结合/结合剂活性
    binding
    74 54
    定位
    localization
    29 5 结构分子活性
    structural molecule activity
    1 0
    再生
    reproduction
    4 1 细胞成分
    Cellular Component
    细胞间区域
    extracellular region
    6 2
    生长
    growth
    0 1 细胞连丝
    cell junction
    4 0
    生物调控
    biological regulation
    13 7 细胞膜要素
    membrane part
    36 5
    再生过程
    reproductive process
    2 0 细胞膜 membrane 38 6
    多细胞组织过程
    multicellular organismal process
    1 2 膜结合腔体
    membrane-enclosed lumen
    0 2
    发育过程
    developmental process
    2 2 细胞器
    organelle
    11 23
    细胞过程
    cellular process
    78 64 细胞
    cell
    23 26
    信号
    signaling
    2 2 细胞要素
    cell part
    23 26
    代谢过程
    metabolic process
    116 68 大分子复合物
    macromolecular complex
    3 8
    细胞器要素
    organelle part
    2 4
    下载: 导出CSV
  • [1] 林燕金, 林旗华, 姜翠翠, 等. 福建省柚类产业发展现状及对策 [J]. 东南园艺, 2014, 2(5):39−42. doi: 10.3969/j.issn.1004-6089.2014.05.009

    LIN Y J, LIN Q H, JIANG C C, et al. Industry status and countermeasures of pomelo industry in Fujian Province [J]. Southeast Horticulture, 2014, 2(5): 39−42.(in Chinese) doi: 10.3969/j.issn.1004-6089.2014.05.009
    [2] 王梨嬛, 潘永娟, 杨莉, 等. ‘琯溪蜜柚’荧光定量PCR内参基因的筛选 [J]. 果树学报, 2013, 30(1):48−54.

    WANG L H, PAN Y J, YANG L, et al. Validation of internal reference genes for qRT-PCR normalization in Guanxi Sweet Pummelo(Citrus grandis) [J]. Journal of Fruit Science, 2013, 30(1): 48−54.(in Chinese)
    [3] 赵卫红. 福建省主要城市降水离子特征及沉降量现状分析 [J]. 亚热带资源与环境学报, 2008, 3(3):19−24. doi: 10.3969/j.issn.1673-7105.2008.03.004

    ZHAO W H. On characteristics of precipitation ion and current sedimentation situation in main cities of Fujian Province [J]. Journal of Subtropical Resources and Environment, 2008, 3(3): 19−24.(in Chinese) doi: 10.3969/j.issn.1673-7105.2008.03.004
    [4] 钱笑杰, 林晓兰, 肖靖, 等. 福建果园土壤pH值、养分关系与土壤肥力质量评价研究: 以福建省漳州市平和县琯溪蜜柚园地为例 [J]. 福建热作科技, 2017, 42(1):9−15. doi: 10.3969/j.issn.1006-2327.2017.01.003

    QIAN X J, LIN X L, XIAO J, et al. Evaluation research between soil pH, nutrition and soil fertility in Fujian orchard [J]. Fujian Science & Technology of Tropical Crops, 2017, 42(1): 9−15.(in Chinese) doi: 10.3969/j.issn.1006-2327.2017.01.003
    [5] 任晓巧, 章家恩, 向慧敏, 等. 酸雨对植物地上部生理生态的影响研究进展与展望 [J]. 应用与环境生物学报, 2021, 27(5):1−10.

    REN X Q, ZHANG J E, XIANG H M, et al. Research advances and prospects for effects of acid rain on the aboveground physiology of plants and the related alleviation countermeasures [J]. Chinese Journal of Applied & Environmental Biology, 2021, 27(5): 1−10.(in Chinese)
    [6] HU W J, CHEN J, LIU T W, et al. Proteome and calcium-related gene expression in Pinus massoniana needles in response to acid rain under different calcium levels [J]. Plant and Soil, 2014, 380: 285−303. doi: 10.1007/s11104-014-2086-9
    [7] 宋晓梅, 曹向阳. 模拟酸雨对不同园林植物叶片生理生态特性的影响 [J]. 水土保持研究, 2017, 24(2):365−370.

    SONG X M, CAO X Y. Effect of simulated acid rain on the physiological and ecological characteristics of different garden plants [J]. Research of Soil and Water Conservation, 2017, 24(2): 365−370.(in Chinese)
    [8] YAN P, WU L Q, WANG D H, et al. Soil acidification in Chinese tea plantations [J]. Science of the Total Environment, 2020, 715: 1−7.
    [9] LIU T W, NIU L, FU B, et al. A transcriptomic study reveals differentially expressed genes and pathways respond to simulated acid rain in Arabidopsis thaliana [J]. Genome, 2013, 56(1): 49−60. doi: 10.1139/gen-2012-0090
    [10] 俞翰炳. 模拟酸雨对拟南芥抗病性的影响及机理探究[D]. 杭州: 杭州师范大学, 2015.

    YU H B. Studies on effects and mechanisms of simulated acid rain on Arabidopsis thaliana tolerance to disease[D]. Hangzhou: Hangzhou Normal University, 2015. (in Chinese).
    [11] 牛力. 模拟酸雨对拟南芥某些生理特性和基因表达谱的影响[D]. 厦门: 厦门大学, 2009.

    NIU L. Effects of simulated acid rain on some physiological characteristics and gene expression profiles of Arabidopsis thaliana[D]. Xiamen, China: Xiamen University, 2009. (in Chinese).
    [12] 张琼, 陆銮眉, 戴清霞, 等. 模拟酸雨对‘琯溪蜜柚’叶片抗氧化酶活性和光合作用的影响 [J]. 果树学报, 2018, 35(7):828−835.

    ZHANG Q, LU L M, DAI Q X, et al. Effects of acid rain on the leaves antioxidase activity and photosynthesis of Citrus Grandis(L.) Osbeck. ‘Guanximiyou’ seedlings [J]. Journal of Fruit Science, 2018, 35(7): 828−835.(in Chinese)
    [13] KIM D, PERTEA G, TRAPNELL C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions [J]. Genome Biology, 2013, 14(4): R36. doi: 10.1186/gb-2013-14-4-r36
    [14] TRAPNELL C, WILLIAMS B A, PERTEA G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation [J]. Nature Biotechnology, 2010, 28(5): 511−515. doi: 10.1038/nbt.1621
    [15] 任晓巧, 章家恩, 向慧敏, 等. 酸雨对植物地上部生理生态的影响研究进展与展望[J/OL]. 应用与环境生物学报: 1-12 [2021-04-25]. https://doi.org/10.19675/j.cnki.1006-687x.2020.07054.

    REN X Q, ZHANG J, XIANG H M, et al. Research advances and prospects for effects of acid rain on the aboveground physiology of plants and the related alleviation countermeasures [J/OL]. Chinese Journal of Applied and Environmental Biology: 1−12 [2021-04-25]. https://doi.org/10.19675/j.cnki.1006-687x.2020.07054. (in Chinese).
    [16] 张利霞, 郝国宝, 常青山, 等. 模拟酸雨胁迫对夏枯草抗氧化酶活性和光合参数的影响 [J]. 中国草地学报, 2020, 42(4):56−61.

    ZHANG L X, HAO G B, CHANG Q S, et al. Antioxidant capacity and photosynthetic characteristics of Prunella vulgaris seedlings in response to simulated acid rain stress [J]. Chinese Journal of Grassland, 2020, 42(4): 56−61.(in Chinese)
    [17] 马永佳, 梁婵娟. 外源钙对模拟酸雨胁迫下水稻质膜组分和钙形态的调节 [J]. 农业环境科学学报, 2021, 40(6): 1159-1166.

    MA Y J, LIANG C J. Regulation of exogenous calcium on plasma membrane compositions and calcium forms of rice roots under simulated acid rain stress [J]. Journal of Agro-Environment Science, 2021, 40(6): 1159−1166. https://kns.cnki.net/kcms/detail/12.1347.
    [18] 刘洪博, 刘新龙, 苏火生, 等. 干旱胁迫下割手密根系转录组差异表达分析 [J]. 中国农业科学, 2017, 50(6):1167−1178. doi: 10.3864/j.issn.0578-1752.2017.06.017

    LIU H B, LIU X L, SU H S, et al. Transcriptome difference analysis of Saccharum spontaneum roots in response to drought stress [J]. Scientia Agricultura Sinica, 2017, 50(6): 1167−1178.(in Chinese) doi: 10.3864/j.issn.0578-1752.2017.06.017
    [19] 阎秀峰. 植物次生代谢生态学 [J]. 植物生态学报, 2001, 25(5):639−640, 622. doi: 10.3321/j.issn:1005-264X.2001.05.021

    YAN X F. Ecology of plant secondary metabolism [J]. Acta Phytoecologica Sinica, 2001, 25(5): 639−640, 622.(in Chinese) doi: 10.3321/j.issn:1005-264X.2001.05.021
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  630
  • HTML全文浏览量:  187
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-07
  • 修回日期:  2021-04-15
  • 网络出版日期:  2021-07-13
  • 刊出日期:  2021-07-28

目录

    /

    返回文章
    返回