Effects of Tillage on Aggregates and Organic Carbon Stability of Soil at Minqin Oasis
-
摘要:
目的 探讨不同耕作措施对民勤绿洲区农田土壤的团聚体组成及有机碳稳定性的影响,以期为开展民勤绿洲区农田土壤抗蚀性研究、促进绿洲区农田土壤资源的可持续利用提供理论依据。 方法 依托民勤绿洲区的长期定位试验,以自然撂荒地为对照(CK),研究了免耕(Tn)、少耕(Tm)、深松(Ts)和秋翻(Tf)4种耕作措施对土壤团聚体组成及有机碳稳定性的影响。 结果 (1)土壤团聚体方面,4种耕作措施均显著提高了土壤大团聚体(>0.25 mm)的含量,其中Tm处理的土壤大团聚体含量最高,在0~20 cm土层较Tn、Ts、Tf和CK显著增加了9.39%、11.38%、6.09%和35.41%,在20~40 cm土层较Tn和CK显著增加了13.74%和38.65%。同时,Tm、Ts和Tf处理也显著提高了0~20 cm和20~40 cm土层土壤团聚体的平均重量直径(MWD)和几何平均直径(GMD)。(2)土壤有机碳稳定性方面,4种耕作措施均显著提高了各土层不同粒级团聚体的有机碳含量和碳累积矿化量。其中Tn处理的有机碳含量最高,在0~20 cm和20~40 cm土层分别较Ts、Tf、CK显著增加了18.58%、39.53%、58.40%和40.08%、22.84%、60.93%,且随着粒级的减小和土壤深度的加深而减少。另外,除<0.25 mm粒级团聚体外,Tn处理的有机碳累积矿化量也显著高于CK。同时,4种耕作措施显著降低了微团聚体(<0.25 mm)的有机碳贡献率,Tn、Tm、Ts和Tf处理较CK显著降低了0~20 cm土层微团聚体(<0.25 mm)的有机碳贡献率32.89%、49.37%、26.61%、38.88%。 结论 耕作措施可以促进耕层土壤团聚体的形成,增加土壤团聚体的稳定性。其中,免耕和少耕能够减少机械的破坏作用,提高各土层及表层土壤大团聚体的有机碳含量,免耕更利于有机碳的固定,少耕更利于土壤团聚体的结构稳定性。综合分析,免耕和少耕可作为民勤绿洲区农田最适宜的土壤耕作措施。 Abstract:Objective Aggregate distribution and organic carbon stability of farmland soil at Minqin Oasis under different methods of tillage were studied for improvements on the soil erosion eradication and agriculture sustainability in the area. Methods Taking advantage of the ongoing fixed position monitoring program at Minqin Oasis and utilizing a virgin land in the area as control (CK), 4 tilling methods including no-tilling (Tn), less-tilling (Tm), deep-loosening (Ts), and autumn turning-over (Tf) were performed to determine their effects on the aggregate composition and organic carbon stability of the soil. Results (1) In terms of soil aggregates, the tested tillage significantly increased the proportion of aggregates containing particles larger than 0.25 mm in the soil. Among them, Tm yielded 9.39% higher proportion than Tn, 11.38% higher than Ts, 6.09% higher than Tf, and 35.41 higher than CK in 0-20 cm soil, and 13.74% higher than Tn and 38.65% higher than CK in 20-40 layer. At the same time, Tm, Ts, and Tf significantly increased the mean weight diameter (MWD) and geometric mean diameter (GMD). (2) In terms of soil organic carbon stability, all 4 tilling methods significantly increased the content and cumulative mineralization of organic carbon in aggregates of different sizes in the soil layers. However, Tn resulted in greatest organic carbon content among them. It significantly increased carbon content over Ts, Tf, and CK by 18.58%, 39.53%, and 58.40%, respectively, in the soil at a depth of 0-20 cm, and 40.08%, 22.84%, and 60.93%, respectively, in the 20-40 cm layer. And the content decreased with reducing particle size and increasing depth of soil. In addition to agglomeration smaller than 0.25 mm, the cumulative mineralization of organic carbon treated by Tn was significantly higher than CK. Meanwhile, the tillage significantly reduced the organic carbon contribution proportion in soil by microaggregates smaller than 0.25 mm, as Tn, Tm, Ts, and Tf significantly reduced it by 32.89 %, 49.37 %, 26.61 %, and 38.88 %, respectively, over CK in 0-20 cm layer of the soil. Conclusion Tillage promoted the formation and stability of aggregates and also improved the carbon stability in soil. The less-tilling Tm and the no-tilling Tn minimized mechanical damage to the soil while increased the organic carbon content of large aggregates in surface and tillered soil. Tn was especially conducive to the carbon fixation, and Tm to the stability of soil. Thus, those two methods were recommended for farming in the region. -
Key words:
- Tillage /
- oasis farmland /
- soil aggregates /
- organic carbon stability
-
表 1 试验土壤基本理化性质
Table 1. Basic physiochemical properties of sampled soils
耕作措施
Tillage measurespH EC/ms·cm−1 有机质
Organic
matter/(g·kg−1)全氮
Total
nitrogen/(g·kg−1)有效磷
Available
phosphorus/(mg·kg−1)速效钾
Rapidly available
potassium/(mg·kg−1)免耕 No-tillage 7.99 0.37 10.66 0.44 1.19 169.50 少耕 Less-tillage 8.20 0.34 10.02 0.36 1.12 168.30 深松 Deep loosening 8.21 0.31 8.99 0.34 1.08 163.20 秋翻 Autumn turning 8.64 0.28 7.64 0.33 1.03 162.80 撂荒地(CK) Abandoned land 8.30 0.77 6.73 0.31 0.89 146.60 表 2 不同耕作措施下农田土壤团聚体分布
Table 2. Effects of tillage on distribution of soil aggregates
土层/cm
Soil layer处理
Treatment土壤团聚体粒径 Soil aggregate particle size/% R0.25 >2 mm 1~2 mm 0.25~1 mm <0.25 mm 0~20 Tn 21.25±1.67 c 13.20±1.33 a 35.33±2.35 a 30.22±1.55 b 69.78±1.64 bc Tm 26.58±0.75 a 14.55±0.84 a 35.20±1.53 a 23.67±2.42 c 76.33±1.82 a Ts 24.30±1.24 ab 13.05±0.61 a 31.19±1.24 b 31.47±2.06 b 68.53±1.09 c Tf 22.80±2.07 bc 13.88±0.87 a 35.27±1.71 a 28.05±2.16 b 71.95±0.65 b CK 18.60±0.92 d 13.62±0.79 a 24.15±1.96 c 43.63±1.58 a 56.37±0.38 d 20~40 Tn 26.56±1.22 c 15.19±0.98 a 30.73±1.65 b 27.53±3.00 b 72.47±1.41 b Tm 32.66±0.06 b 15.81±1.12 a 33.97±1.53 a 17.57±1.67 c 82.43±1.30 a Ts 34.85±0.77 a 16.36±1.25 a 29.25±2.55 b 19.54±2.77 c 80.46±1.25 a Tf 30.78±0.23 b 15.62±0.55 a 35.98±1.28 a 17.62±1.64 c 82.38±0.56 a CK 28.32±1.94 c 13.25±1.08 b 17.88±0.85 c 40.55±2.14 a 59.45±0.62 c 注:表中小写字母表示不同处理在p<0.05(Duncan新复极差法)水平下差异显著。
Note: Data with different letters indicate significant differences among treatments at p<0.05. -
[1] BRONICK C J, LAL R. Soil structure and management: A review [J]. Geoderma, 2005, 124(1/2): 3−22. [2] 王丽, 李军, 李娟, 等. 轮耕与施肥对渭北旱作玉米田土壤团聚体和有机碳含量的影响 [J]. 应用生态学报, 2014, 25(3):759−768.WANG L, LI J, LI J, et al. Effects of tillage rotation and fertilization on soil aggregates and organic carbon content in corn field in Weibei Highland [J]. Chinese Journal of Applied Ecology, 2014, 25(3): 759−768.(in Chinese) [3] Lal, R., Shukla, M. K. Principles of Soil Physics[M]. Marcel Dekker Inc., New York, 2004. [4] 高建华, 张承中. 不同保护性耕作措施对黄土高原旱作农田土壤物理结构的影响 [J]. 干旱地区农业研究, 2010, 28(4):192−196.GAO J H, ZHANG C Z. The effects of different conservation tillage on soil physical structures of dry farmland in the Loess Plateau [J]. Agricultural Research in the Arid Areas, 2010, 28(4): 192−196.(in Chinese) [5] 张翰林, 郑宪清, 何七勇, 等. 不同秸秆还田年限对稻麦轮作土壤团聚体和有机碳的影响 [J]. 水土保持学报, 2016, 30(4):216−220.ZHANG H L, ZHENG X Q, HE Q Y, et al. Effect of years of straw returning on soil aggregates and organic carbon in rice-wheat rotation systems [J]. Journal of Soil and Water Conservation, 2016, 30(4): 216−220.(in Chinese) [6] 陈晓芬, 李忠佩, 刘明, 等. 不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响 [J]. 中国农业科学, 2013, 46(5):950−960. doi: 10.3864/j.issn.0578-1752.2013.05.010CHEN X F, LI Z P, LIU M, et al. Effects of different fertilizations on organic carbon and nitrogen contents in water-stable aggregates and microbial biomass content in paddy soil of subtropical China [J]. Scientia Agricultura Sinica, 2013, 46(5): 950−960.(in Chinese) doi: 10.3864/j.issn.0578-1752.2013.05.010 [7] BOSSUYT H, SIX J, HENDRIX P F. Protection of soil carbon by microaggregates within earthworm casts [J]. Soil Biology and Biochemistry, 2005, 37(2): 251−258. doi: 10.1016/j.soilbio.2004.07.035 [8] 范如芹, 梁爱珍, 杨学明, 等. 耕作方式对黑土团聚体含量及特征的影响 [J]. 中国农业科学, 2010, 43(18):3767−3775. doi: 10.3864/j.issn.0578-1752.2010.18.010FAN R Q, LIANG A Z, YANG X M, et al. Effects of tillage on soil aggregates in black soils in northeast China [J]. Scientia Agricultura Sinica, 2010, 43(18): 3767−3775.(in Chinese) doi: 10.3864/j.issn.0578-1752.2010.18.010 [9] SIX J, ELLIOTT E T, PAUSTIAN K. Soil structure and soil organic matter II. A normalized stability index and the effect of mineralogy [J]. Soil Science Society of America Journal, 2000, 64(3): 1042−1049. doi: 10.2136/sssaj2000.6431042x [10] SIX J, PAUSTIAN K, ELLIOTT E T, et al. Soil structure and organic matter I. distribution of aggregate-size classes and aggregate-associated carbon [J]. Soil Science Society of America Journal, 2000, 64(2): 681−689. doi: 10.2136/sssaj2000.642681x [11] SPOHN M, GIANI L. Impacts of land use change on soil aggregation and aggregate stabilizing compounds as dependent on time [J]. Soil Biology and Biochemistry, 2011, 43(5): 1081−1088. doi: 10.1016/j.soilbio.2011.01.029 [12] BEARE M H, HENDRIX P F, COLEMAN D C. Water-stable aggregates and organic matter fractions in conventional- and no-tillage soils [J]. Soil Science Society of America Journal, 1994, 58(3): 777−786. doi: 10.2136/sssaj1994.03615995005800030020x [13] 李忠佩, 吴大付. 红壤水稻土有机碳库的平衡值确定及固碳潜力分析 [J]. 土壤学报, 2006, 43(1):46−52. doi: 10.3321/j.issn:0564-3929.2006.01.007LI Z P, WU D F. Organic C content at steady state and potential of C sequestration of paddy soils in subtropical China [J]. Acta Pedologica Sinica, 2006, 43(1): 46−52.(in Chinese) doi: 10.3321/j.issn:0564-3929.2006.01.007 [14] HAYNES R. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand [J]. Soil Biology and Biochemistry, 2000, 32(2): 211−219. doi: 10.1016/S0038-0717(99)00148-0 [15] 周萍, 宋国菡, 潘根兴, 等. 南方三种典型水稻土长期试验下有机碳积累机制研究 Ⅰ. 团聚体物理保护作用 [J]. 土壤学报, 2008, 45(6):1063−1071. doi: 10.3321/j.issn:0564-3929.2008.06.008ZHOU P, SONG G H, PAN G X, et al. Soc accumulation in three major types of paddy soils under long-term agro-ecosystem experiments from South China I. physical protection in soil micro-aggregates [J]. Acta Pedologica Sinica, 2008, 45(6): 1063−1071.(in Chinese) doi: 10.3321/j.issn:0564-3929.2008.06.008 [16] BACH E M, HOFMOCKEL K S. Soil aggregate isolation method affects measures of intra-aggregate extracellular enzyme activity [J]. Soil Biology and Biochemistry, 2014, 69: 54−62. doi: 10.1016/j.soilbio.2013.10.033 [17] 赵鹏, 史东梅, 赵培, 等. 紫色土坡耕地土壤团聚体分形维数与有机碳关系 [J]. 农业工程学报, 2013, 29(22):137−144. doi: 10.3969/j.issn.1002-6819.2013.22.016ZHAO P, SHI D M, ZHAO P, et al. Relation of soil aggregate fractal dimension and organic carbon in purple-soil slope farmland [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(22): 137−144.(in Chinese) doi: 10.3969/j.issn.1002-6819.2013.22.016 [18] VAN BAVEL C H M. Mean weight-diameter of soil aggregates as a statistical index of aggregation [J]. Soil Science Society of America Journal, 1950, 14(C): 20−23. doi: 10.2136/sssaj1950.036159950014000C0005x [19] 何淑勤, 郑子成, 宫渊波. 不同退耕模式下土壤水稳性团聚体及其有机碳分布特征 [J]. 水土保持学报, 2011, 25(5):229−233.HE S Q, ZHENG Z C, GONG Y B. Distribution characteristics and soil organic carbon of soil water-stable aggregates with different de-farming patterns [J]. Journal of Soil and Water Conservation, 2011, 25(5): 229−233.(in Chinese) [20] 杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征 [J]. 科学通报, 1993, 38(20):1896−1899. doi: 10.3321/j.issn:0023-074X.1993.20.010YANG P L, LUO Y P, SHI Y C. Soil fractal characteristics characterized by particle size weight distribution [J]. Cinese Science Bulletin, 1993, 38(20): 1896−1899.(in Chinese) doi: 10.3321/j.issn:0023-074X.1993.20.010 [21] 鲍士旦. 土壤农化分析[M]. 第三版. 北京: 中国农业出版社, 2000: 30-49. [22] 邱莉萍, 张兴昌, 张晋爱. 黄土高原长期培肥土壤团聚体中养分和酶的分布 [J]. 生态学报, 2006, 26(2):364−372. doi: 10.3321/j.issn:1000-0933.2006.02.008QIU L P, ZHANG X C, ZHANG J A. Distribution of nutrients and enzymes in Loess Plateau soil aggregates after long-term fertilization [J]. Acta Ecologica Sinica, 2006, 26(2): 364−372.(in Chinese) doi: 10.3321/j.issn:1000-0933.2006.02.008 [23] 李顺姬, 邱莉萍, 张兴昌. 黄土高原土壤有机碳矿化及其与土壤理化性质的关系 [J]. 生态学报, 2010, 30(5):1217−1226.LI S J, QIU L P, ZHANG X C. Mineralization of soil organic carbon and its relations with soil physical and chemical properties on the Loess Plateau [J]. Acta Ecologica Sinica, 2010, 30(5): 1217−1226.(in Chinese) [24] 吴萌, 李忠佩, 冯有智, 等. 长期施肥处理下不同类型水稻土有机碳矿化的动态差异 [J]. 中国农业科学, 2016, 49(9):1705−1714. doi: 10.3864/j.issn.0578-1752.2016.09.007WU M, LI Z P, FENG Y Z, et al. Dynamic differences of organic carbon mineralization in different types of paddy soil under long-term located fertilization [J]. Scientia Agricultura Sinica, 2016, 49(9): 1705−1714.(in Chinese) doi: 10.3864/j.issn.0578-1752.2016.09.007 [25] 赵红香, 迟淑筠, 宁堂原, 等. 科学耕作与留茬改良小麦-玉米两熟农田土壤物理性状及增产效果 [J]. 农业工程学报, 2013, 29(9):113−122.ZHAO H X, CHI S Y, NING T Y, et al. Covering farming pattern to improve soil physical properties and crop yield in wheat-maize cropping system [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(9): 113−122.(in Chinese) [26] 刘晓利, 何园球, 李成亮, 等. 不同利用方式和肥力红壤中水稳性团聚体分布及物理性质特征 [J]. 土壤学报, 2008, 45(3):459−465. doi: 10.3321/j.issn:0564-3929.2008.03.011LIU X L, HE Y Q, LI C L, et al. Distribution and physical properties of soil water-stable aggregates in red soils different in land use and soil fertility [J]. Acta Pedologica Sinica, 2008, 45(3): 459−465.(in Chinese) doi: 10.3321/j.issn:0564-3929.2008.03.011 [27] 侯贤清, 贾志宽, 韩清芳, 等. 不同轮耕模式对旱地土壤结构及入渗蓄水特性的影响 [J]. 农业工程学报, 2012, 28(5):85−94. doi: 10.3969/j.issn.1002-6819.2012.05.015HOU X Q, JIA Z K, HAN Q F, et al. Effects of different rotational tillage patterns on soil structure, infiltration and water storage characteristics in dryland [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 85−94.(in Chinese) doi: 10.3969/j.issn.1002-6819.2012.05.015 [28] 王军强, 刘立超, 杨义荣, 等. 民勤绿洲区撂荒农耕地土壤有机碳变化特征及影响因素 [J]. 土壤, 2015, 47(5):932−939.WANG J Q, LIU L C, YANG Y R, et al. Changes and influencing factors of soil organic carbon in abandoned cropland of Minqin oasis region [J]. Soils, 2015, 47(5): 932−939.(in Chinese) [29] 刘中良, 宇万太. 土壤团聚体中有机碳研究进展 [J]. 中国生态农业学报, 2011, 19(2):447−455. doi: 10.3724/SP.J.1011.2011.00447LIU Z L, YU W T. Review of researches on soil aggregate and soil organic carbon [J]. Chinese Journal of Eco-Agriculture, 2011, 19(2): 447−455.(in Chinese) doi: 10.3724/SP.J.1011.2011.00447 [30] 刘红梅, 李睿颖, 高晶晶, 等. 保护性耕作对土壤团聚体及微生物学特性的影响研究进展 [J]. 生态环境学报, 2020, 29(6):1277−1284.LIU H M, LI R Y, GAO J J, et al. Research progress on the effects of conservation tillage on soil aggregates and microbiological characteristics [J]. Ecology and Environmental Sciences, 2020, 29(6): 1277−1284.(in Chinese) [31] SOMBRERO A, DE BENITO A. Carbon accumulation in soil. Ten-year study of conservation tillage and crop rotation in a semi-arid area of Castile-Leon, Spain [J]. Soil and Tillage Research, 2010, 107(2): 64−70. doi: 10.1016/j.still.2010.02.009 [32] SYSWERDA S P, CORBIN A T, MOKMA D L, et al. Agricultural management and soil carbon storage in surface vs. deep layers [J]. Soil Science Society of America Journal, 2011, 75(1): 92−101. doi: 10.2136/sssaj2009.0414 [33] 李景, 吴会军, 武雪萍, 等. 长期保护性耕作提高土壤大团聚体含量及团聚体有机碳的作用 [J]. 植物营养与肥料学报, 2015, 21(2):378−386. doi: 10.11674/zwyf.2015.0212LI J, WU H J, WU X P, et al. Impact of long-term conservation tillage on soil aggregate formation and aggregate organic carbon contents [J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(2): 378−386.(in Chinese) doi: 10.11674/zwyf.2015.0212 [34] 殷文, 郭瑶, 陈桂平, 等. 绿洲农田土壤团聚体组成及有机碳和全氮分布对秸秆还田方式的响应 [J]. 干旱地区农业研究, 2019, 37(3):139−148. doi: 10.7606/j.issn.1000-7601.2019.03.18YIN W, GUO Y, CHEN G P, et al. Response of composition of soil aggregates and distribution of organic carbonand total nitrogen to straw returning in an oasis area [J]. Agricultural Research in the Arid Areas, 2019, 37(3): 139−148.(in Chinese) doi: 10.7606/j.issn.1000-7601.2019.03.18 [35] 郭菊花, 陈小云, 刘满强, 等. 不同施肥处理对红壤性水稻土团聚体的分布及有机碳、氮含量的影响 [J]. 土壤, 2007, 39(5):787−793. doi: 10.3321/j.issn:0253-9829.2007.05.020GUO J H, CHEN X Y, LIU M Q, et al. Effects of fertilizer management practice on distribution of aggregates and content of organic carbon and nitrogen in red paddy soil [J]. Soils, 2007, 39(5): 787−793.(in Chinese) doi: 10.3321/j.issn:0253-9829.2007.05.020 [36] 刘晶, 田耀武, 张巧明. 豫西黄土丘陵区不同土地利用方式土壤团聚体有机碳含量及其矿化特征 [J]. 水土保持学报, 2016, 30(3):255−261.LIU J, TIAN Y W, ZHANG Q M. Characteristics of soil organic carbon content and mineralization in soil aggregates under different land use patterns on the loess hilly area of western Henan [J]. Journal of Soil and Water Conservation, 2016, 30(3): 255−261.(in Chinese) [37] 崔孝强, 阮震, 刘丹, 等. 耕作方式对稻-油轮作系统土壤理化性质及重金属有效性的影响 [J]. 水土保持学报, 2012, 26(5):73−77.CUI X Q, RUAN Z, LIU D, et al. Effects of tillage methods on physicochemical properties and heavy metal availability of soils in rice-rape rotation systems [J]. Journal of Soil and Water Conservation, 2012, 26(5): 73−77.(in Chinese) [38] 王昌全, 代天飞, 李冰, 等. 稻麦轮作下水稻土重金属形态特征及其生物有效性 [J]. 生态学报, 2007, 27(3):889−897. doi: 10.3321/j.issn:1000-0933.2007.03.008WANG C Q, DAI T F, LI B, et al. The speciation and bioavailability of heavy metals in paddy soils under the rice-wheat cultivation rotation [J]. Acta Ecologica Sinica, 2007, 27(3): 889−897.(in Chinese) doi: 10.3321/j.issn:1000-0933.2007.03.008 [39] 魏亚伟, 苏以荣, 陈香碧, 等. 人为干扰对喀斯特土壤团聚体及其有机碳稳定性的影响 [J]. 应用生态学报, 2011, 22(4):971−978.WEI Y W, SU Y R, CHEN X B, et al. Effects of human disturbance on soil aggregates content and their organic C stability in Karst regions [J]. Chinese Journal of Applied Ecology, 2011, 22(4): 971−978.(in Chinese) [40] ELLIOTT E T, CAMBARDELLA C A. Physical separation of soil organic matter [J]. Agriculture, Ecosystems & Environment, 1991, 34(1-4): 407−419. [41] PUGET P, CHENU C, BALESDENT J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates [J]. European Journal of Soil Science, 2010, 51(4): 595−605.