Functional Bacillus Species in Camellia Seed Shell Compost
-
摘要:
目的 从自然状态下的油茶壳堆肥产品中筛选功能芽孢杆菌,为油茶壳堆肥高效生产、饲料发酵等应用提供菌剂。 方法 利用高通量测序技术测定广西某油茶壳堆肥中微生物群落分布,筛选适宜堆肥微生物生长的培养基以获得多样性较丰富的堆肥芽孢杆菌菌群,经平板稀释涂布法分离纯化菌株,使用水解圈法和酶活测定方法进行水解酶功能分析,利用菌株形态特征观察、16S rDNA分子鉴定法明确菌株的种属,并运用分子生物学软件 MEGAX构建系统发育树。使用重铬酸钾法测定腐殖酸含量。 结果 芽孢杆菌科(Bacillaceae)是优势菌科,占比达55.58%;分离到15株芽孢杆菌,同时具有淀粉酶、纤维素酶、蛋白酶3种水解酶活性的菌株有6株;同时具有淀粉酶和纤维素酶活性的有1株;仅具有蛋白酶或纤维素酶一种酶活性的有2株。其中菌株Bacillus sp. YX11的蛋白酶活力达到27.07±3.28 U·mL−1,淀粉酶活力达123.97±3.19 U·mL−1,纤维素酶活力达15.75±0.23 U·mL−1。含有这15株菌的复合菌制剂有利于腐殖酸的生成,提高了堆肥品质。 结论 鉴定出的Bacillus cereus YX02和 Bacillus flexus FYF01等菌株具有进一步研究开发的价值,可用于开发油茶壳堆肥微生物菌制剂。 Abstract:Objective Bacillus spp that contribute to the fermentation of Camellia oleifera seed shells were isolated for effective composting of the waste material. Method The microbial community in natural camellia seed shell compost found in Guangxi was studied using the high-throughput sequencing technology. Suitable culture medium to foster the growth of richly diverse Bacillus spp from the compost was selected. Flora isolation by dilution with a streaking plate method followed. The hydrolase activities of the isolates were determined by using the hydrolysis circle method and enzyme activity analysis, the species identified by a 16S rDNA analysis, and the phylogeny constructed by MEGAX. The content of humic acid in the compost was measured by a potassium dichromate method. Result Bacillaceae was the dominant family in the compost. It accounted for 55.58% of all isolated flora. Among the 15 Bacillus isolates, 6 exhibited activities of amylase, cellulase, and protease, one of amylase and cellulase, and 2 of protease or protease. Strain YX11 showed a protease activity of 27.07±3.28 U·mL−1, an amylase activity of 123.97±3.19 U·mL−1, and a cellulase activity of 15.75±0.23 U·mL−1. In the presence of numerous Bacillus spp that secreted varieties of hydrolases, formation of humic acid in the compost was enhanced. Conclusion Some of the isolated strains, such as B. cereus YX02 and B. flexus FYF01, might warrant further investigation to develop microbial inoculants for efficient composting camellia seed shells. -
Key words:
- camellia seed shell compost /
- bacillus /
- functional /
- screening /
- application
-
表 1 菌制剂应用试验配方
Table 1. Proposed formulations of microbial inoculants
组别
Group油茶壳
Camellia shell/g菌液
microbial inoculants/mL糖蜜
Molasses/mL花生枯
Peanut cake/g尿素
Urea/g水
H2O/mL菌制剂 experiment group 15 15 6 1.2 1.2 100 对照组 control group 15 0 6 1.2 1.2 115 表 2 菌株形态特征
Table 2. Morphological characteristics of isolated Bacillus spp
菌株编号
Strains菌落质地
Colony texture菌落颜色
Colony color菌落形态
Colony morphologyYX01 干燥、皱褶 dry and wrinkled 半透明色 translucent color 不规则圆形,有毛边 irregular round with rough edges YX02 干燥、皱褶 dry and wrinkled 乳白色 milky white 较规则圆形,中间隆起 regular round, middle uplift YX03 光滑、湿润 smooth and moist 半透明色 translucent color 较规则圆形 regular round YX07 光滑、湿润 smooth and moist 乳白色 milky white 圆形 round YX08 光滑、湿润 smooth and moist 半透明色 translucent color 圆形 round YX11 湿润、黏稠 wet and sticky 乳白色 milky white 圆形 round YX12 光滑、湿润 smooth and moist 乳白色 milky white 圆形 round YX13 干燥、皱褶 dry and wrinkled 枯黄色 withered yellow 不规则圆形,有毛边 irregular round with rough edges YX15 光滑、湿润 smooth and moist 乳白色 milky white 圆形 round YX16 光滑、湿润 smooth and moist 乳白色 milky white 圆形 round FYF01 干燥、皱褶 dry and wrinkled 乳白色 milky white 不规则圆形,有毛边 irregular round with rough edges FYF04 光滑、湿润 smooth and moist 乳白色 milky white 较规则圆形 regular round FYF07 光滑、湿润 smooth and moist 乳白色 milky white 较规则圆形,中间隆起 regular round, middle uplift FYF08 干燥、皱褶 dry and wrinkled 半透明色 translucent color 不规则圆形,有毛边 irregular round with rough edges FYF10 光滑、湿润 smooth and moist 乳白色 milky white 较规则圆形 regular round 表 3 菌株16S rDNA鉴定结果
Table 3. Identifications by 16S rDNA
序号 Serial number 编号 Number 菌种分类 Species classification 1 YX01 Bacillus sp. 2 YX02 Bacillus cereus 3 YX03 Bacillus sp. 4 YX07 Bacillus sp. 5 YX08 Bacillus sp. 6 YX11 Bacillus sp. 7 YX12 Bacillus sp. 8 YX13 Bacillus sp. 9 YX15 Brevibacterium oceani 10 YX16 Bacillus sp. 11 FYF01 Bacillus flexus 12 FYF04 Bacillus sp. 13 FYF07 Bacillus sp. 14 FYF08 Bacillus sp. 15 FYF10 Bacillus sp. 表 4 不同培养基上菌落直径与透明圈直径比
Table 4. Ratio of transparent ring diameter to colony diameter on different mediums
菌株编号
Strains脱脂乳糖培养基
Skim milk medium淀粉培养基
Starch medium刚果红培养基
Congo red medium透明圈直径D
Transparent ring
diameter/mm菌落直径d
Colony
diameter/mm直径比D/d
Diameter
ratio透明圈直径D
Transparent ring
diameter/mm菌落直径d
Colony
diameter/mm直径比D/d
Diameter
ratio透明圈直径D
Transparent ring
diameter/mm菌落直径d
Colony
diameter/mm直径比D/d
Diameter
ratioYX01 0.0 7.5 0.00 13.0 7.5 1.73 18.0 5.0 3.60 YX02 28.0 26.5 1.06 0.0 16.0 0.00 0.0 11.0 0.00 YX03 0.0 0.0 0.00 0.0 4.0 0.00 20.0 8.0 2.50 YX07 0.0 0.0 0.00 0.0 6.5 0.00 0.0 8.5 0.00 YX08 0.0 0.0 0.00 0.0 11.0 0.00 0.0 2.0 0.00 YX11 25.0 20.0 1.25 19.5 6.0 3.25 30.0 11.0 2.73 YX12 0.0 0.0 0.00 0.0 5.0 0.00 0.0 8.0 0.00 YX13 29.0 23.0 1.26 20.0 8.0 2.50 18.0 8.5 2.12 YX15 0.0 0.0 0.00 0.0 6.5 0.00 0.0 10.0 0.00 YX16 0.0 0.0 0.00 0.0 4.0 0.00 0.0 7.0 0.00 FYF01 14.0 12.0 1.17 16.0 6.0 2.67 32.0 6.5 4.92 FYF04 30.0 21.5 1.39 14.0 7.0 2.00 24.5 6.0 4.08 FYF07 26.0 19.0 1.37 20.0 11.5 1.74 24.0 9.0 2.67 FYF08 0.0 0.0 0.00 0.0 7.0 0.00 0.0 2.0 0.00 FYF10 25.5 19.5 1.31 18.0 12.5 1.44 25.0 9.0 2.78 -
[1] HU J B, SHI Y, LIU Y, et al. Anatomical structure of Camellia oleifera shell [J]. Protoplasma, 2018, 255(6): 1777−1784. doi: 10.1007/s00709-018-1271-8 [2] 覃佐东, 谢吉勇, 黄生辉, 等. 油茶壳综合利用研究进展 [J]. 生物加工过程, 2016, 14(5):74−78. doi: 10.3969/j.issn.1672-3678.2016.05.014QIN Z D, XIE J Y, HUANG S H, et al. Progress in utilization of camellia shells [J]. Chinese Journal of Bioprocess Engineering, 2016, 14(5): 74−78.(in Chinese) doi: 10.3969/j.issn.1672-3678.2016.05.014 [3] SHRESTHA K, SHRESTHA P, WALSH K B, et al. Microbial enhancement of compost extracts based on cattle rumen content compost - characterisation of a system [J]. Bioresource Technology, 2011, 102(17): 8027−8034. doi: 10.1016/j.biortech.2011.06.076 [4] SONG C, ZHANG Y, XIA X, et al. Effect of inoculation with a microbial consortium that degrades organic acids on the composting efficiency of food waste [J]. Microbial Biotechnology, 2018, 11(6): 1124−1136. doi: 10.1111/1751-7915.13294 [5] FANG Y, JIA X B, CHEN L J, et al. Effect of thermotolerant bacterial inoculation on the microbial community during sludge composting [J]. Canadian Journal of Microbiology, 2019, 65(10): 750−761. doi: 10.1139/cjm-2019-0107 [6] THATOI H, BEHERA B C, MISHRA R R, et al. Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: A review [J]. Annals of Microbiology, 2013, 63(1): 1−19. doi: 10.1007/s13213-012-0442-7 [7] 胡亚杰, 韦建玉, 卢健, 等. 枯草芽孢杆菌在农作物生产上的应用研究进展 [J]. 作物研究, 2019, 33(2):167−172.HU Y J, WEI J Y, LU J, et al. Research prog ress of Bacillus subtilis application in crops production [J]. Crop Research, 2019, 33(2): 167−172.(in Chinese) [8] MAYENDE L, WILHELMI B, PLETSCHKE B. Cellulases (CMCases) and polyphenol oxidases from thermophilic Bacillus spp. isolated from compost [J]. Soil Biology and Biochemistry, 2006, 38(9): 2963−2966. doi: 10.1016/j.soilbio.2006.03.019 [9] JOSÉ V C. Inoculating composted pine bark with beneficial organisms to make a disease suppressive compost for container production in mexican forest nurseries [J]. Plants Journal, 2004, 2(5): 181−185. [10] KRAUSE M S, DE CEUSTER T J J, TIQUIA S M, et al. Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish [J]. Phytopathology, 2003, 93(10): 1292−1300. doi: 10.1094/PHYTO.2003.93.10.1292 [11] 付冰妍, 孙向阳, 余克非, 等. 芽孢杆菌B01固态发酵及其对园林废弃物堆肥的影响 [J]. 环境科学研究, 2020(2):450−457.FU B Y, SUN X Y, YU K F, et al. Solid state fermentation of Bacillus B01 and its effect on green waste composting [J]. Research of Environmental Sciences, 2020(2): 450−457.(in Chinese) [12] 余培斌, 杜晶, 陈建新. 高温好氧堆肥过程中芽孢杆菌的筛选、鉴定及应用 [J]. 食品与发酵工业, 2020, 46(12):199−205, 212.YU P B, DU J, CHEN J X. Study on screening and identification of Bacillus in the process of high-temperature aerobic composting and its application [J]. Food and Fermentation Industries, 2020, 46(12): 199−205, 212.(in Chinese) [13] ZHANG J P, YING Y, LI X B, et al. Physical and chemical properties of Camellia oleifera shell composts with different additives and its maturity evaluation system [J]. Environmental Science and Pollution Research, 2020, 27(28): 35294−35302. doi: 10.1007/s11356-020-09861-3 [14] 詹孝慈, 罗在柒, 武忠亮, 等. 不同氮源及微生物菌剂能提高油茶壳堆肥效果 [J]. 分子植物育种, 2019, 17(12):4153−4160.ZHAN X C, LUO Z Q, WU Z L, et al. Different nitrogen sources and microbial inoculants could improve the composting of Camellia oleifera shell [J]. Fenzi Zhiwu Yuzhong (Molecular Plant Breeding), 2019, 17(12): 4153−4160.(in Chinese) [15] ZHANG J P, YING Y, YAO X H. Effects of turning frequency on the nutrients of Camellia oleifera shell co-compost with goat dung and evaluation of co-compost maturity [J]. PLoS One, 2019, 14(9): e0222841. doi: 10.1371/journal.pone.0222841 [16] 秦楠, 栗东芳, 杨瑞馥. 高通量测序技术及其在微生物学研究中的应用 [J]. 微生物学报, 2011, 51(4):445−457.QIN N, LI D F, YANG R F. Next-generation sequencing technologies and the application in microbiology-A review [J]. Acta Microbiologica Sinica, 2011, 51(4): 445−457.(in Chinese) [17] 葛慈斌, 蓝江林, 刘波, 等. 解淀粉芽胞杆菌FJAT-8754产纤维素酶和淀粉酶发酵动力学模型的构建 [J]. 福建农业学报, 2019, 34(6):697−704.GE C B, LAN J L, LIU B, et al. Kinetics of cellulase and amylase-producing fermentation of Bacillus amylolique faciens FJAT-8754 [J]. Fujian Journal of Agricultural Sciences, 2019, 34(6): 697−704.(in Chinese) [18] 赵国群, 牛梦天, 卢士康, 等. 梨渣固态发酵培养多粘类芽孢杆菌的工艺 [J]. 农业工程学报, 2016, 32(7):303−308.ZHAO G Q, NIU M T, LU S K, et al. Cultivation of Paenibacillus polymyxa by solid-state fermentation of pear residues [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(7): 303−308.(in Chinese) [19] 胡瑞萍, 丁贤, 李来好, 等. 响应面法优化枯草芽孢杆菌NHS1产芽孢发酵培养 [J]. 生态学杂志, 2018, 37(2):605−612.HU R P, DING X, LI L H, et al. Optimization of fermentation medium composition by response surface methodology for the spore production of Bacillus subtilis [J]. Chinese Journal of Ecology, 2018, 37(2): 605−612.(in Chinese) [20] 董佩佩, 汪祥燕, 刘元香, 等. 一株凝结芽孢杆菌(Bacillus coagulans)发酵培养基的优化 [J]. 中国酿造, 2018, 37(4):28−32. doi: 10.11882/j.issn.0254-5071.2018.04.006DONG P P, WANG X Y, LIU Y X, et al. Optimization of fermentation medium of Bacillus coagulans [J]. China Brewing, 2018, 37(4): 28−32.(in Chinese) doi: 10.11882/j.issn.0254-5071.2018.04.006 [21] MATHAKIYA R A, ROY A, NANDASANA K N, et al. Evaluation of a rapid molecular method for detection of Listeria monocytogenes directly from broth culture[J]. Veterinary World, 2009, 2(5): 177-178. [22] 何深宏, 程方俊, 罗干, 等. 解淀粉芽孢杆菌高产纤维素酶菌株的筛选与鉴定 [J]. 福建农业学报, 2020, 35(7):781−787.HE S H, CHENG F J, LUO G, et al. Screening and identifying cellulase-producing Bacillus amyloliquefaciens [J]. Fujian Journal of Agricultural Sciences, 2020, 35(7): 781−787.(in Chinese) [23] YU D, TONG W, CHEN Y, et al. Improvement of bacterial genomic DNA extraction in clinical specimens [J]. Chinese Journal of Microecology, 2007, 6(19): 519−520. [24] 王佳楠, 石妍云, 郑力燕, 等. 石油降解菌的分离鉴定及4株芽胞杆菌种间效应 [J]. 环境科学, 2015, 36(6):2245−2251.WANG J N, SHI Y Y, ZHENG L Y, et al. Isolation and identification of petroleum degradation bacteria and interspecific interactions among four Bacillus strains [J]. Environmental Science, 2015, 36(6): 2245−2251.(in Chinese) [25] DUNLAP C A, SCHISLER D A, PERRY E B, et al. Bacillus swezeyi sp. nov. and Bacillus haynesii sp. nov., isolated from desert soil [J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(8): 2720−2725. doi: 10.1099/ijsem.0.002007 [26] ADAWAREN E O, DU PLESSIS M, SULEMAN E, et al. The complete mitochondrial genome of Gyps coprotheres (Aves, Accipitridae, Accipitriformes): Phylogenetic analysis of mitogenome among raptors [J]. PeerJ, 2020, 8: e10034. doi: 10.7717/peerj.10034 [27] QIAN Y, SUN Y, ZHONG L, et al. The GATA-Type Transcriptional Factor Are1 Modulates the Expression of Extracellular Proteases and Cellulases in Trichoderma reesei [J]. International Journal of Molecular Sciences, 2019, 20(17): 4100. doi: 10.3390/ijms20174100 [28] ELAMARY R, SALEM W M. Optimizing and purifying extracellular amylase from soil bacteria to inhibit clinical biofilm-forming bacteria [J]. PeerJ, 2020, 8: e10288. doi: 10.7717/peerj.10288 [29] HAJIABADI S, MASHREGHI M, REZA BAHRAMI A, et al. Isolation and molecular identification of cellulolytic bacteria from Dig Rostam hot spring and study of their cellulase activity [J]. BIOCELL, 2020, 44(1): 63−71. doi: 10.32604/biocell.2020.08171 [30] WU C L, LIU D, YANG X H, et al. Improving production of protease from Pseudoalteromonas sp. CSN423 by random mutagenesis [J]. Marine Biotechnology (New York, N Y), 2016, 18(5): 610−618. doi: 10.1007/s10126-016-9721-9 [31] 曹丹, 彭浩, 兰阿峰, 等. 一株α-淀粉酶产生菌的分离、鉴定及产酶条件研究 [J]. 食品研究与开发, 2020, 41(6):169−174.CAO D, PENG H, LAN A F, et al. Isolation, identification and enzyme production conditions of an α-amylase producing strain [J]. Food Research And Developmen, 2020, 41(6): 169−174.(in Chinese) [32] 冯红梅, 秦永胜, 李筱帆, 等. 高温纤维素降解菌群筛选及产酶特性 [J]. 环境科学, 2016, 37(4):1546−1552.FENG H M, QIN Y S, LI X F, et al. Screening and enzyme production characteristics of thermophilic cellulase-producing strains [J]. Environmental Science, 2016, 37(4): 1546−1552.(in Chinese) [33] 附录B(规范性附录)总腐植酸含量的测定方法[J]. 腐植酸, 2016(2): 47−48.Appendix B (normative appendix) determination method of total humic acid content[J]. Humic acid, 2016 (2): 47 − 48. (in Chinese). [34] JAIN S, SALUJA B, GUPTA A, et al. Validation of arsenic resistance in Bacillus cereus strain AG27 by comparative protein modeling of arsC gene product [J]. The Protein Journal, 2011, 30(2): 91−101. doi: 10.1007/s10930-011-9305-5 [35] BHADRA B, RAGHUKUMAR C, PINDI P K, et al. Brevibacterium oceani sp. nov., isolated from deep-sea sediment of the Chagos Trench, Indian Ocean [J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(1): 57−60. doi: 10.1099/ijs.0.64869-0 [36] JEBELI M A, MALEKI A, AMOOZEGAR M A, et al. Bacillus flexus strain As-12, a new arsenic transformer bacterium isolated from contaminated water resources [J]. Chemosphere, 2017, 169: 636−641. doi: 10.1016/j.chemosphere.2016.11.129 [37] LIU D, LI M, XI B, et al. Metaproteomics reveals major microbial players and their biodegradation functions in a large‐scale aerobic composting plant [J]. Microbial Biotechnology, 2015, 8(6): 950−960. doi: 10.1111/1751-7915.12290 [38] 聂文翰, 戚志萍, 冯海玮, 等. 复合菌剂秸秆堆肥对土壤碳氮含量和酶活性的影响 [J]. 环境科学, 2017, 38(2):783−791.NIE W H, QI Z P, FENG H W, et al. Steaw composts with composite inoculants and theie effects on soil caebon and niteogen contents and enzyme activity [J]. Environmental Science, 2017, 38(2): 783−791.(in Chinese) [39] WANG M, MIAO J, WANG X, et al. Genomic and transcriptome analyses of a thermophilic bacterium Geobacillus stearothermophilus B5 isolated from compost reveal its enzymatic basis for lignocellulose degradation [J]. Microorganisms, 2020, 8(9): 1−18. [40] 王腾浩, 潘岳龙, 沈炜, 等. 蜡样芽孢杆菌与粪肠球菌协同发酵豆粕工艺条件优化 [J]. 饲料研究, 2020, 43(3):74−77.WANG T H, PAN Y L, SHEN W, et al. The optimization of fermentation conditions of soybean meal by using Bacillus Cereus and Enterococcus Faecalis [J]. Feed Research, 2020, 43(3): 74−77.(in Chinese) [41] LI Y, CHI M, GE X, et al. Identification of a novel hydrolase encoded by hy-1 from Bacillus amyloliquefaciens for bioremediation of carbendazim contaminated soil and food [J]. International journal of agricultural and biological engineering, 2019, 12(2): 218−224. doi: 10.25165/j.ijabe.20191202.4190 [42] 阚洪媛, 杨世鑫, 孙梁伦, 等. 一株耐铅、锌、铬菌株的分离鉴定及其吸附能力 [J]. 微生物学通报, 2020(12):3974−3986.KAN H Y, YANG S X, SUN L L, et al. Isolation, identification and adsorption capacity of a strain resistant to lead, zinc and chromium [J]. Microbiology China, 2020(12): 3974−3986.(in Chinese) [43] 潘建华, 刘瑞霞. 蜡状芽孢杆菌Bacillus cereus吸附铅的研究 [J]. 环境科学, 2004, 25(2):166−169. doi: 10.3321/j.issn:0250-3301.2004.02.034PAN J H, LIU R X. Biosorption of Pb 2+ by Bacillus cereus Biomass [J]. Environmental Science, 2004, 25(2): 166−169.(in Chinese) doi: 10.3321/j.issn:0250-3301.2004.02.034 [44] 呼庆, 齐鸿雁, 窦敏娜, 等. 强抗镉蜡状芽孢杆菌的分离鉴定及其抗性机理 [J]. 环境科学, 2007, 28(2):427−430. doi: 10.3321/j.issn:0250-3301.2007.02.038HU Q, QI H Y, DOU M N, et al. Isolation, molecular characterization and resistance mechanism study on a cadmium hyperresistant Bacillus cereus [J]. Environmental Science, 2007, 28(2): 427−430.(in Chinese) doi: 10.3321/j.issn:0250-3301.2007.02.038 [45] 段海明. 两株蜡状芽孢杆菌对毒死蜱的降解动力学研究 [J]. 中国生态农业学报, 2013, 21(2):207−211.DUAN H M. Kinetics of chlorpyrifos degradation by Bacillus cereus strains [J]. Chinese Journal of Eco-Agriculture, 2013, 21(2): 207−211.(in Chinese) [46] LU M, ZHANG Z Z. Phytoremediation of soil co-contaminated with heavy metals and deca-BDE by co-planting of Sedum alfredii with tall fescue associated with Bacillus cereus JP12 [J]. Plant and Soil, 2014, 382(1/2): 89−102. [47] NAYAK A K, PANDA S S, BASU A, et al. Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L [J]. International Journal of Phytoremediation, 2018, 20(7): 682−691. doi: 10.1080/15226514.2017.1413332 [48] XIONG Y W, LI X W, WANG T T, et al. Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress [J]. Ecotoxicology and Environmental Safety, 2020, 194: 110374. doi: 10.1016/j.ecoenv.2020.110374 [49] KUMAR A, PRIYADARSHINEE R, SINGHA S, et al. Biodegradation of alkali lignin by Bacillus flexus RMWW II: Analyzing performance for abatement of rice mill wastewater [J]. Water Science and Technology, 2019, 80(9): 1623−1632. doi: 10.2166/wst.2020.005 [50] MOHANTY S S, KUMAR A. Response surface methodology mediated optimization of Indanthrene Blue RS by a novel isolated bacterial strain Bacillus flexus TS8 [J]. Water Environment Research, 2020, 92(4): 569−578. doi: 10.1002/wer.1246 [51] REDA F M, HASSANEIN W A, MOABED S, et al. Potential exploitation of Bacillus flexus biofilm against the cowpea weevil, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) [J]. Egyptian Journal of Biological Pest Control, 2020, 30(1): 1−7. doi: 10.1186/s41938-020-0205-x [52] NAM J H, BAE W, LEE D H. Oceanobacillus caeni sp. nov., isolated from a Bacillus-dominated wastewater treatment system in Korea [J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58: 1109−1113. doi: 10.1099/ijs.0.65335-0