Effects of Long-term Organic Fertilization on Organic Carbon and Microbial Community in Red Soil and Rice Yield
-
摘要:
目的 以40年红壤长期有机培肥试验为研究平台,探究长期施用紫云英、猪粪及秸秆还田对稻田土壤有机碳组分、土壤微生物量及水稻产量的影响。 方法 设置6个处理:不施肥处理(CK)、化肥处理(NPK)、早稻施绿肥紫云英处理(M1)、早稻施绿肥紫云英和早稻施猪粪处理(M2)、早稻施绿肥紫云英和晚稻施猪粪处理(M3)、早稻施绿肥紫云英和晚稻秸秆还田处理(M4)。于2020年晚稻收获前采集耕作层(0~20 cm)土壤样品,测定土壤有机碳组分、微生物量碳氮等肥力指标。 结果 (1)长期有机培肥处理提高了水稻产量,较不施肥处理CK相比,绿肥紫云英添加猪粪的M2、M3处理早稻产量,分别提高1.4、1.25倍,晚稻产量则分别提高0.59、0.65倍;绿肥紫云英添加猪粪的M2、M3处理早稻产量,较化肥NPK处理分别提升18.1%、10.6%,晚稻产量分别提升15.7%、20.0%。(2)长期有机培肥处理提高了各形态土壤有机碳组分含量,早稻绿肥紫云英+猪粪的M2处理较不施肥CK处理显著提高易氧化性有机碳、游离态颗粒有机碳、可溶性有机碳含量(P<0.05),且有机碳各组分含量均高于化肥NPK处理,其中游离态颗粒有机碳含量M2处理(0.97 g·kg−1)显著高于NPK处理(0.68 g·kg−1)(P<0.05);化肥NPK处理和有机培肥处理(M1、M2、M3、M4)土壤微生物量碳较不施肥CK处理相比提高了22.1%~58.9%,早稻绿肥紫云英+猪粪的M2处理土壤微生物量碳含量(231.2 mg·kg−1)最高且提升最为明显(P<0.05)。(3)长期有机培肥提高了游离态颗粒有机碳和可溶性有机碳的分配比例,且早稻施绿肥紫云英+猪粪M2处理效果明显;易氧化性有机碳是红壤有机碳的主要存在形式;土壤有机碳与易氧化性有机碳、游离态颗粒有机碳及可溶性有机碳呈极显著正相关关系(P<0.01)。(4)长期有机培肥提高了全氮、碱解氮等养分指标,产量与速效磷、有机碳、全氮、速效氮、可溶性有机碳极显著相关(P<0.01),与全磷、游离态颗粒有机碳、易氧化性有机碳显著相关(P<0.05)。 结论 长期有机培肥通过提升红壤肥力水平,调增可溶性有机碳含量,促进水稻稳产增产,尤其是紫云英添加猪粪处理模式具有较好的应用潜力。 Abstract:Objective Effects of long-term application of organic waste, such as Chinese milk vetch, pig manure, and/or straws, on the organic carbon components and microbial biomass in the soil, as well as the yield of rice cultivated two consecutive seasons in a year on the land were studied with the aid of a 40-year research project on red soil of rice paddy fields. Methods Six treatments designed for the study included (1) CK of no added fertilizer, (2) NPK of chemical fertilizer application, (3) M1 of Chinese milk vetch fertilization on early rice, (4) M2 of Chinese milk vetch plus pig manure applications on early rice, (5) M3 of Chinese milk vetch applied on early rice and pig manure on late rice, and (6) M4 of Chinese milk vetch application on early rice and straw returning on late rice. Soil samples were collected at a depth of 0–20 cm before the late rice was harvested in 2020 for fertility determinations on organic carbons, microbial biomass, nitrogen, etc. Result (1) Long-term organic fertilization could increase rice yield. As shown in the study, the yields of the early rice under M2 and M3 increased 1.4 and 1.25 times, respectively, and those of the late rice 0.59 and 0.65 times, respectively, over CK. In comparison with NPK, M2 and M3 raised the early rice yield by 18.1% and 10.6%, respectively, and the late rice yield by 15.7% and 20.0%, respectively. (2) Long-term organic fertilization could enhance the organic carbon content in soil. As compared to CK, the contents of permanganate oxidative organic carbon, free particulate organic carbon, and dissolved organic carbon on the early rice field under M2 significantly increased (P<0.05). The free particulate organic carbon content of 0.97 g·kg−1 was significantly higher than that under NPK treatment at 0.68 g·kg−1. The microbial biomass carbon in the soil under NPK, M1, M2, M3, or M4 was 22.1% to 58.9% higher than CK with the early rice field rendering the most significant effect at 231.2 mg·kg−1 (P<0.05). (3) Long-term organic fertilization could heighten the ratio of free particulate carbon and dissolved organic carbon distributions in soil. The most significant results were observed on the early rice lots under M2, and the main form of carbon was permanganate oxidative organic carbon. In the soil, organic carbon correlated with permanganate oxidative organic carbon, free particulate carbon, and dissolved organic carbon (P<0.01). And (4) long-term organic fertilization could also increase the total nitrogen, alkali-hydrolyzed nitrogen, and other nutrients in the soil. The rice yield was found significantly correlate with the available phosphorus, organic carbon, total nitrogen, available nitrogen, and dissolved organic carbon in soil at P<0.01, as well as with the total phosphorus, free particulate organic carbon, and permanganate oxidative organic carbon at P<0.05. Conclusion Long-term organic fertilization could materially improve the fertility and adequately regulate the dissolved organic carbon in the red soil promoting the yield of rice cultivated on the fertilized land. The application of Chinese milk vetch and pig manure presented a promising potential for sustainable agricultural development. -
表 1 不同处理间施肥方案
Table 1. Fertilization treatments applied
处理
Treatment早季稻 Early-season rice 晚季稻 Late-season rice 肥料
Fertilizer施用量
Dosage/
(kg·hm−2)肥料
Fertilizer施用量
Dosage/
(kg·hm−2)CK 不施肥
No fertilizer— 不施肥
No fertilizer— NPK N 159.0 N 159 P2O5 75.0 P2O5 75 K2O 142.5 K2O 142.5 M1 绿肥
Green manure22500 绿肥
Green manure0 M2 绿肥
Green manure22500 绿肥
Green manure0 猪粪
Pig manure22500 猪粪
Pig manure0 M3 绿肥
Green manure22500 猪粪
Pig manure22500 M4 绿肥
Green manure22500 秸秆还田
Straw returning4500 表 2 不同施肥处理对土壤理化性质的影响
Table 2. Soil physiochemical properties under varied treatments
处理
TreatmentpH 有机碳
Organic carbon/
(g·kg−1)全氮
Total nitrogen/
(g·kg−1)全磷
Total phosphorus/
(g·kg−1)全钾
Total potassium/
(g·kg−1)碱解氮
Alkaline hydrolysis
nitrogen/(mg·kg−1 )速效磷
Available phosphorus/
(mg·kg−1 )速效钾
Available potassium/
(mg·kg−1)碳氮比
C/NCK 5.05 ± 0.11 b 13.98 ± 0.40 c 1.79 ± 0.04 d 1.04 ± 0.04 bc 10.68 ± 0.35 a 143.07 ± 6.73 b 13.08 ± 0.07 b 53.50 ± 4.36 a 7.82 ± 0.24 a NPK 4.92 ± 0.08 b 16.05 ± 0.54 bc 2.09 ± 0.08 cd 1.32 ± 0.05 b 11.26 ± 0.18 a 164.92 ± 7.64 b 18.43 ± 0.30 b 51.00 ± 1.38 a 7.69 ± 0.13 a M1 4.95 ± 0.03 b 17.20 ± 0.51 b 2.23 ± 0.08 c 1.22 ± 0.04 b 10.61 ± 0.32 a 172.78 ± 4.05 b 15.83 ± 0.20 b 63.67 ± 6.57 a 7.71 ± 0.10 a M2 5.11 ± 0.04 b 20.73 ± 0.87 a 2.78 ± 0.11 a 1.81 ± 0.13 a 10.60 ± 0.47 a 216.38 ± 4.59 a 73.53 ± 12.23 a 60.50 ± 4.11 a 7.46 ± 0.05 a M3 5.46 ± 0.07 a 20.16 ± 0.91 a 2.70 ± 0.13 ab 1.78 ± 0.08 a 10.96 ± 0.12 a 208.64 ± 12.77 a 69.97 ± 6.42 a 58.83 ± 3.51 a 7.47 ± 0.05 a M4 5.03 ± 0.05 b 18.26 ± 0.57 ab 2.37 ± 0.07 bc 0.81 ± 0.02 c 10.38 ± 0.20 a 176.35 ± 9.05 b 15.83 ± 0.84 b 70.33 ± 10.08 a 7.70 ± 0.02 a 注:同行数据后不同小写字母表示不同处理间差异显著(P<0.05),表4同。
Note: Different lowercase letters indicated significant difference among different treatment(P <0.05). The same as Table 4.表 3 红壤性水稻土各形态有机碳相关性分析
Table 3. Correlations among different forms of organic carbon in red paddy soil
有机碳形态
Carbon fraction有机碳
SOC易氧化性有机碳
POXC游离态颗粒有机碳
FPOC闭蓄态颗粒有机碳
OPOC可溶性有机碳
DOCSOC 1 POXC 0.745** 1 FPOC 0.678** 0.543* 1 OPOC 0.414 0.459 0.516* 1 DOC 0.858** 0.606** 0.818** 0.43 1 注:表中*表示在 P<0.05水平差异显著;**表示在P<0.01 水平差异极显著。
Note: * represents in P<0.05 level reached significant level; ** represents in P<0.01 level was extremely significant.表 4 不同施肥处理对土壤微生物碳氮及衍生指数的影响
Table 4. Effects of treatments on microbial carbon, nitrogen, and derived indices of soil
处理
Treatment微生物量碳
Soil microbial biomass
carbon/(mg·kg−1)微生物量氮
Soil microbial biomass
nitrogen/(mg·kg−1)微生物熵
Microbial quotient/%微生物量碳氮比
C/N ratio of
microbial biomass土壤基础呼吸
Soil base respiration/
( mg·kg−1·h−1)CK 145.48 ± 3.40 b 9.15 ± 0.83 a 1.04 ± 0.04 a 16.12 ± 2.13 a 1.30 ± 0.13 c NPK 177.61 ± 15.29 ab 8.75 ± 0.68 a 1.11 ± 0.08 a 20.28 ± 0.39 a 1.56 ± 0.17 bc M1 193.98 ± 6.61 ab 10.91 ± 0.53 a 1.13 ± 0.05 a 17.82 ± 0.92 a 1.88 ± 0.26 abc M2 231.16 ± 7.68 a 10.61 ± 1.31 a 1.12 ± 0.07 a 22.28 ± 3.52 a 2.34 ± 0.02 a M3 196.91 ± 15.56 ab 10.50 ± 1.44 a 0.98 ± 0.05 a 19.16 ± 3.12 a 2.13 ± 0.12 ab M4 178.16 ± 16.36 ab 9.70 ± 0.49 a 0.98 ± 0.08 a 18.33 ± 1.93 a 1.79 ± 0.13 abc 表 5 不同施肥处理2006–2020年水稻产量稳定性
Table 5. Stability of rice yield under varied treatments from 2006 to 2020
处理 Treatments 早稻 Early rice 晚稻 Late rice 变异系数 CV 稳定性系数 SYI 变异系数 CV 稳定性系数 SYI CK 0.269 0.423 0.153 0.604 NPK 0.218 0.522 0.199 0.609 M1 0.210 0.487 0.199 0.603 M2 0.229 0.551 0.221 0.614 M3 0.202 0.603 0.237 0.634 M4 0.196 0.550 0.202 0.608 -
[1] LIU K L, LI Y Z. Different response of grain yield to soil organic carbon, nitrogen, and phosphorus in red soil as based on the long-term fertilization experiment [J]. Eurasian Soil Science, 2018, 51(12): 1507−1513. doi: 10.1134/S1064229318130021 [2] DE BOER W, KOWALCHUK G A. Nitrification in acid soils: Micro-organisms and mechanisms [J]. Soil Biology and Biochemistry, 2001, 33(7/8): 853−866. [3] 赵天龙, 解光宁, 张晓霞, 等. 酸性土壤上植物应对铝胁迫的过程与机制 [J]. 应用生态学报, 2013, 24(10):3003−3011.ZHAO T L, XIE G N, ZHANG X X, et al. Process and mechanism of plants in overcoming acid soil aluminum stress [J]. Chinese Journal of Applied Ecology, 2013, 24(10): 3003−3011.(in Chinese) [4] 周娟, 袁珍贵, 郭莉莉, 等. 土壤酸化对作物生长发育的影响及改良措施 [J]. 作物研究, 2013, 27(1):96−102. doi: 10.3969/j.issn.1001-5280.2013.01.23ZHOU J, YUAN Z G, GUO L L, et al. Effects of soil acidification on crop growth and improvement measures [J]. Crop Research, 2013, 27(1): 96−102.(in Chinese) doi: 10.3969/j.issn.1001-5280.2013.01.23 [5] 李自林. 我国农业面源污染现状及其对策研究 [J]. 干旱地区农业研究, 2013, 31(5):207−212.LI Z L. Review of the current situation and control countermeasures in agricultural non-point source pollution control in China [J]. Agricultural Research in the Arid Areas, 2013, 31(5): 207−212.(in Chinese) [6] 宋以玲, 于建, 陈士更, 等. 化肥减量配施生物有机肥对油菜生长及土壤微生物和酶活性影响 [J]. 水土保持学报, 2018, 32(1):352−360.SONG Y L, YU J, CHEN S G, et al. Effects of reduced chemical fertilizer with application of bio-organic fertilizer on rape growth, microorganism and enzymes activities in soil [J]. Journal of Soil and Water Conservation, 2018, 32(1): 352−360.(in Chinese) [7] 陈海滨, 陈志彪, 陈志强. 南方红壤侵蚀区地形对土壤有机质空间分布的影响: 以长汀县河田地区为例 [J]. 福建农业学报, 2010, 25(3):369−373. doi: 10.3969/j.issn.1008-0384.2010.03.026CHEN H B, CHEN Z B, CHEN Z Q. Impact of topography on spatial distribution of organic matters in red eroded soil in South China: A case study at Hetian in Changting County [J]. Fujian Journal of Agricultural Sciences, 2010, 25(3): 369−373.(in Chinese) doi: 10.3969/j.issn.1008-0384.2010.03.026 [8] LI L J, ZHU-BARKER X, YE R Z, et al. Soil microbial biomass size and soil carbon influence the priming effect from carbon inputs depending on nitrogen availability [J]. Soil Biology and Biochemistry, 2018, 119: 41−49. doi: 10.1016/j.soilbio.2018.01.003 [9] LAL R. Soil carbon sequestration impacts on global climate change and food security [J]. Science, 2004, 304(5677): 1623−1627. doi: 10.1126/science.1097396 [10] GONG H Y, DU Q J, XIE S B, et al. Soil microbial DNA concentration is a powerful indicator for estimating soil microbial biomass C and N across arid and semi-arid regions in Northern China [J]. Applied Soil Ecology, 2021, 160: 103869. doi: 10.1016/j.apsoil.2020.103869 [11] BÖHME L, LANGER U, BÖHME F. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments [J]. Agriculture, Ecosystems & Environment, 2005, 109(1/2): 141−152. [12] 郑亮, 沈健林, 邹冬生, 等. 猪粪化肥配施对双季稻稻田土壤活性碳氮含量及水稻产量的影响 [J]. 农业现代化研究, 2014, 35(5):633−639.ZHENG L, SHEN J L, ZOU D S, et al. Effects of combined applications of pig manure and chemical fertilizers on soil carbon and nitrogen fertility and gain yield in double-rice ecosystem [J]. Research of Agricultural Modernization, 2014, 35(5): 633−639.(in Chinese) [13] 任天志. 持续农业中的土壤生物指标研究 [J]. 中国农业科学, 2000, 33(1):68−75.REN T Z. Soil bioindicators in sustainable agriculture [J]. Scientia Agricultura Sinica, 2000, 33(1): 68−75.(in Chinese) [14] 黄欠如, 胡锋, 李辉信, 等. 红壤性水稻土施肥的产量效应及与气候、地力的关系 [J]. 土壤学报, 2006, 43(6):926−933. doi: 10.3321/j.issn:0564-3929.2006.06.007HUANG Q R, HU F, LI H X, et al. Crop yield response to fertilization and its relations with climate and soil fertility in red paddy soil [J]. Acta Pedologica Sinica, 2006, 43(6): 926−933.(in Chinese) doi: 10.3321/j.issn:0564-3929.2006.06.007 [15] 李继明, 黄庆海, 袁天佑, 等. 长期施用绿肥对红壤稻田水稻产量和土壤养分的影响 [J]. 植物营养与肥料学报, 2011, 17(3):563−570. doi: 10.11674/zwyf.2011.0359LI J M, HUANG Q H, YUAN T Y, et al. Effects of long-term green manure application on rice yield and soil nutrients in paddy soil [J]. Plant Nutrition and Fertilizer Science, 2011, 17(3): 563−570.(in Chinese) doi: 10.11674/zwyf.2011.0359 [16] 陈贵, 张红梅, 沈亚强, 等. 猪粪与牛粪有机肥对水稻产量、养分利用和土壤肥力的影响 [J]. 土壤, 2018, 50(1):59−65.CHEN G, ZHANG H M, SHEN Y Q, et al. Application effects of swine and cow manures on rice yield, nutrient uptakes and use efficiencies and soil fertility [J]. Soils, 2018, 50(1): 59−65.(in Chinese) [17] 王晓娇, 齐鹏, 蔡立群, 等. 培肥措施对旱地农田产量可持续性及土壤有机碳库稳定性的影响 [J]. 草业学报, 2020, 29(10):58−69. doi: 10.11686/cyxb2020187WANG X J, QI P, CAI L Q, et al. Effects of alternative fertilization practices on components of the soil organic carbon pool and yield stability in rain-fed maize production on the Loess Plateau [J]. Acta Prataculturae Sinica, 2020, 29(10): 58−69.(in Chinese) doi: 10.11686/cyxb2020187 [18] 臧逸飞, 郝明德, 张丽琼, 等. 26年长期施肥对土壤微生物量碳、氮及土壤呼吸的影响 [J]. 生态学报, 2015, 35(5):1445−1451.ZANG Y F, HAO M D, ZHANG L Q, et al. Effects of wheat cultivation and fertilization on soil microbial biomass carbon, soil microbial biomass nitrogen and soil basal respiration in 26 years [J]. Acta Ecologica Sinica, 2015, 35(5): 1445−1451.(in Chinese) [19] 徐一兰, 唐海明, 肖小平, 等. 长期施肥对双季稻田土壤微生物学特性的影响 [J]. 生态学报, 2016, 36(18):5847−5855.XU Y L, TANG H M, XIAO X P, et al. Effects of different long-term fertilization regimes on the soil microbiological properties of a paddy field [J]. Acta Ecologica Sinica, 2016, 36(18): 5847−5855.(in Chinese) [20] 郭乾坤, 梁国庆, 周卫, 等. 长期有机培肥提高红壤性水稻土生物学特性及水稻产量的微生物学机制 [J]. 植物营养与肥料学报, 2020, 26(3):492−501.GUO Q K, LIANG G Q, ZHOU W, et al. Microbiological mechanism of long-term organic fertilization on improving soil biological properties and double rice yields in red paddy soil [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 492−501.(in Chinese) [21] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. [22] SIX J, ELLIOTT E T, PAUSTIAN K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils [J]. Soil Science Society of America Journal, 1998, 62(5): 1367−1377. doi: 10.2136/sssaj1998.03615995006200050032x [23] 黄鸿翔, 李书田, 李向林, 等. 我国有机肥的现状与发展前景分析 [J]. 土壤肥料, 2006(1):3−8.HUANG H X, LI S T, LI X L, et al. Analysis on the status of organic fertilizer and its development strategies in China [J]. Soils and Fertilizers, 2006(1): 3−8.(in Chinese) [24] 张丽敏, 徐明岗, 娄翼来, 等. 长期施肥下黄壤性水稻土有机碳组分变化特征 [J]. 中国农业科学, 2014, 47(19):3817−3825. doi: 10.3864/j.issn.0578-1752.2014.19.010ZHANG L M, XU M G, LOU Y L, et al. Changes in yellow paddy soil organic carbon fractions under long-term fertilization [J]. Scientia Agricultura Sinica, 2014, 47(19): 3817−3825.(in Chinese) doi: 10.3864/j.issn.0578-1752.2014.19.010 [25] 孙铭鸿, 蒋炳伸, 沈健林, 等. 猪粪化肥配施对稻田土壤氮素含量及氮肥利用效率的影响 [J]. 农业现代化研究, 2021, 42(1):175−183.SUN M H, JIANG B S, SHEN J L, et al. The effects of combined application of pig manure and chemical fertilizers on soil nitrogen contents and nitrogen use efficiency in a subtropical paddy field [J]. Research of Agricultural Modernization, 2021, 42(1): 175−183.(in Chinese) [26] 石丽红, 李超, 唐海明, 等. 长期不同施肥措施对双季稻田土壤活性有机碳组分和水解酶活性的影响 [J]. 应用生态学报, 2021, 32(3):921−930.SHI L H, LI C, TANG H M, et al. Effects of long-term fertilizer management on soil labile organic carbon fractions and hydrolytic enzyme activity under a double-cropping rice system of Southern China [J]. Chinese Journal of Applied Ecology, 2021, 32(3): 921−930.(in Chinese) [27] 徐仁扣, 李九玉, 周世伟, 等. 我国农田土壤酸化调控的科学问题与技术措施 [J]. 中国科学院院刊, 2018, 33(2):160−167.XU R K, LI J Y, ZHOU S W, et al. Scientific issues and controlling strategies of soil acidification of croplands in China [J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 160−167.(in Chinese) [28] 郭春雷, 李娜, 彭靖, 等. 秸秆直接还田及炭化还田对土壤酸度和交换性能的影响 [J]. 植物营养与肥料学报, 2018, 24(5):1205−1213. doi: 10.11674/zwyf.17482GUO C L, LI N, PENG J, et al. Direct returning of maize straw or as biochar to the field triggers change in acidity and exchangeable capacity in soil [J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1205−1213.(in Chinese) doi: 10.11674/zwyf.17482 [29] 张维理, KOLBE H, 张认连. 土壤有机碳作用及转化机制研究进展 [J]. 中国农业科学, 2020, 53(2):317−331. doi: 10.3864/j.issn.0578-1752.2020.02.007ZHANG W L, KOLBE H, ZHANG R L. Research progress of SOC functions and transformation mechanisms [J]. Scientia Agricultura Sinica, 2020, 53(2): 317−331.(in Chinese) doi: 10.3864/j.issn.0578-1752.2020.02.007 [30] LAVALLEE J M, SOONG J L, COTRUFO M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century [J]. Global Change Biology, 2020, 26(1): 261−273. doi: 10.1111/gcb.14859 [31] 肖烨, 黄志刚, 武海涛, 等. 三江平原不同湿地类型土壤活性有机碳组分及含量差异 [J]. 生态学报, 2015, 35(23):7625−7633.XIAO Y, HUANG Z G, WU H T, et al. Compositions and contents of active organic carbon in different wetland soils in Sanjiang Plain, Northeast China [J]. Acta Ecologica Sinica, 2015, 35(23): 7625−7633.(in Chinese) [32] 王小利, 郭振, 段建军, 等. 黄壤性水稻土有机碳及其组分对长期施肥的响应及其演变 [J]. 中国农业科学, 2017, 50(23):4593−4601. doi: 10.3864/j.issn.0578-1752.2017.23.012WANG X L, GUO Z, DUAN J J, et al. The changes of organic carbon and its fractions in Yellow paddy soils under Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2017, 50(23): 4593−4601.(in Chinese) doi: 10.3864/j.issn.0578-1752.2017.23.012 [33] 王玲莉, 韩晓日, 杨劲峰, 等. 长期施肥对棕壤有机碳组分的影响 [J]. 植物营养与肥料学报, 2008, 14(1):79−83. doi: 10.3321/j.issn:1008-505X.2008.01.013WANG L L, HAN X R, YANG J F, et al. Effect of long-term fertilization on organic carbon fractions in a brown soil [J]. Plant Nutrition and Fertilizer Science, 2008, 14(1): 79−83.(in Chinese) doi: 10.3321/j.issn:1008-505X.2008.01.013 [34] 王朔林, 王改兰, 赵旭, 等. 长期施肥对栗褐土有机碳含量及其组分的影响 [J]. 植物营养与肥料学报, 2015, 21(1):104−111. doi: 10.11674/zwyf.2015.0111WANG S L, WANG G L, ZHAO X, et al. Effect of long-term fertilization on organic carbon fractions and contents of cinnamon soil [J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(1): 104−111.(in Chinese) doi: 10.11674/zwyf.2015.0111 [35] GUGGENBERGER G, KAISER K. Dissolved organic matter in soil: Challenging the paradigm of sorptive preservation [J]. Geoderma, 2003, 113(3/4): 293−310. [36] 胡志华, 李大明, 徐小林, 等. 不同有机培肥模式下双季稻田碳汇效应与收益评估 [J]. 中国生态农业学报, 2017, 25(2):157−165.HU Z H, LI D M, XU X L, et al. Evaluation of net carbon sink effects and costs/benefits of double-cropped rice fields under different organic fertilizer applications [J]. Chinese Journal of Eco-Agriculture, 2017, 25(2): 157−165.(in Chinese) [37] 高嵩涓, 曹卫东, 白金顺, 等. 长期冬种绿肥改变红壤稻田土壤微生物生物量特性 [J]. 土壤学报, 2015, 52(4):902−910.GAO S J, CAO W D, BAI J S, et al. Long-term application of winter green manures changed the soil microbial biomass properties in red paddy soil [J]. Acta Pedologica Sinica, 2015, 52(4): 902−910.(in Chinese) [38] 孙凤霞, 张伟华, 徐明岗, 等. 长期施肥对红壤微生物生物量碳氮和微生物碳源利用的影响 [J]. 应用生态学报, 2010, 21(11):2792−2798.SUN F X, ZHANG W H, XU M G, et al. Effects of long-term fertilization on microbial biomass carbon and nitrogen and on carbon source utilization of microbes in a red soil [J]. Chinese Journal of Applied Ecology, 2010, 21(11): 2792−2798.(in Chinese) [39] ANDERSON T H, DOMSCH K H. Ratios of microbial biomass carbon to total organic carbon in arable soils [J]. Soil Biology and Biochemistry, 1989, 21(4): 471−479. doi: 10.1016/0038-0717(89)90117-X [40] LOVELL R D, JARVIS S C, BARDGETT R D. Soil microbial biomass and activity in long-term grassland: Effects of management changes [J]. Soil Biology and Biochemistry, 1995, 27(7): 969−975. doi: 10.1016/0038-0717(94)00241-R [41] 周丽霞, 丁明懋. 土壤微生物学特性对土壤健康的指示作用 [J]. 生物多样性, 2007, 15(2):162−171. doi: 10.3321/j.issn:1005-0094.2007.02.007ZHOU L X, DING M M. Soil microbial characteristics as bioindicators of soil health [J]. Biodiversity Science, 2007, 15(2): 162−171.(in Chinese) doi: 10.3321/j.issn:1005-0094.2007.02.007 [42] 孙瑞, 孙本华, 高明霞, 等. 长期不同土地利用方式下土土壤微生物特性的变化 [J]. 植物营养与肥料学报, 2015, 21(3):655−663. doi: 10.11674/zwyf.2015.0312SUN R, SUN B H, GAO M X, et al. Changes of soil microbial characteristics under long-term different land use patterns on an anthropogenic loess soil [J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 655−663.(in Chinese) doi: 10.11674/zwyf.2015.0312 [43] LI Z P, LIU M, WU X C, et al. Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical China [J]. Soil and Tillage Research, 2010, 106(2): 268−274. doi: 10.1016/j.still.2009.12.008 [44] 王慧, 唐杉, 王允青, 等. 紫云英翻压对稻田土壤肥力和双季稻产量的影响 [J]. 土壤通报, 2019, 50(6):1384−1390.WANG H, TANG S, WANG Y Q, et al. Effects of the incorporation of Chinese milk vetch on soil fertility and double rice yield [J]. Chinese Journal of Soil Science, 2019, 50(6): 1384−1390.(in Chinese)