• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

谷子生长调节因子互作因子基因家族生物信息学分析

张立全 张浩林 李丛丛 魏建华 张杰伟

张立全,张浩林,李丛丛,等. 谷子生长调节因子互作因子基因家族生物信息学分析 [J]. 福建农业学报,2021,36(8):878−883 doi: 10.19303/j.issn.1008-0384.2021.08.002
引用本文: 张立全,张浩林,李丛丛,等. 谷子生长调节因子互作因子基因家族生物信息学分析 [J]. 福建农业学报,2021,36(8):878−883 doi: 10.19303/j.issn.1008-0384.2021.08.002
ZHANG L Q, ZHANG H L, LI C C, et al. Bioinformatics of Growth-interacting Factor Genes in Foxtail Millet [J]. Fujian Journal of Agricultural Sciences,2021,36(8):878−883 doi: 10.19303/j.issn.1008-0384.2021.08.002
Citation: ZHANG L Q, ZHANG H L, LI C C, et al. Bioinformatics of Growth-interacting Factor Genes in Foxtail Millet [J]. Fujian Journal of Agricultural Sciences,2021,36(8):878−883 doi: 10.19303/j.issn.1008-0384.2021.08.002

谷子生长调节因子互作因子基因家族生物信息学分析

doi: 10.19303/j.issn.1008-0384.2021.08.002
基金项目: 国家重点研发计划项目(2019YFD1000700、2019YFD1000703);北京市农林科学院科技创新能力建设专项(KJCX20200205、KJCX20210101)
详细信息
    作者简介:

    张立全(1962−),男,副研究员,研究方向:谷子优质育种(E-mail:zhanglq1962@163.com

    张浩林(1997−),男,硕士研究生,研究方向:谷子优质育种(E-mail:370842440@qq.com

    通讯作者:

    魏建华(1971−),男,研究员,研究方向:分子生物学(E-mail:weijianhua@baafs.net.cn

    张杰伟(1982−),男,副研究员,研究方向:谷子优质分子育种(E-mail:jwzhang919@163.com

  • 中图分类号: S 515

Bioinformatics of Growth-interacting Factor Genes in Foxtail Millet

  • 摘要:   目的  生长调节因子互作因子(GRF-interacting factor,GIF)是植物体内一类转录共激活因子,在植物生长发育和逆境胁迫中起重要作用。通过系统分析谷子GIF基因家族的组成、各成员的结构以及进化关系,为GIF基因调节机制研究提供参考。  方法  利用谷子基因组数据库,采用生物信息学的方法,鉴定谷子GIF 基因家族的基因结构、染色体定位,编码蛋白相似性、二级结构、跨膜区和磷酸化位点预测,通过序列比对进行进化和分类分析。  结果  谷子含有3个GIF 基因,均含有4个外显子,分布于第3、8和9号染色体上。编码SiGIF1蛋白和SiGIF2蛋白相似性最高,为72.04%,SiGIF1蛋白和SiGIF3蛋白相似性最低,为37.08%。二级结构分析显示,谷子GIF蛋白无规则卷曲占比最高(41.56%~56.60%),其次为α-螺旋(34.43%~35.50%),再次为β-转角(5.19%~11.69%),β-折叠最低(3.23%~11.26%)。TMHMM 跨膜区进行分析显示,谷子GIF蛋白均不含有跨膜区。MEME保守基序分析显示,谷子GIF 蛋白均含有保守的SSXT (PF05030)结构域。磷酸化位点预测分析表明谷子GIF 蛋白均含有潜在磷酸化位点。  结论  谷子GIF基因家族的基因结构、磷酸化位点预测等生物信息学分析结果将为揭示谷子GIF基因家族在谷子生长发育过程中的功能提供重要的线索。
  • 图  1  谷子GIF基因家族基因结构分析

    Figure  1.  Structures of SiGIF gene family

    图  2  拟南芥、水稻和谷子的GIFs蛋白保守基序分布

    Figure  2.  Distribution of conserved motifs in GIFs of Arabidopsis, rice, and millet

    图  3  拟南芥、水稻和谷子的GIFs蛋白系统进化树

    Figure  3.  Phylogenetic tree on GIFs of Arabidopsis, rice, and millet

    图  4  谷子SiGIFs蛋白磷酸化位点预测

    Figure  4.  Predicted phosphorylation sites in SiGIFs

    表  1  谷子GIF基因家族的基本特征

    Table  1.   Characteristics of GIF genes in S. italica

    基因名称
    Gene name
    基因座
    Locus name
    转录本
    Transcript name
    别名
    Alias
    染色体定位
    Chromosome location
    开放阅读框
    ORF/bp
    编码蛋白
    Protein/aa
    外显子个数
    Extron number
    SiGIF1 Seita.3G360000 Seita.3G360000.1 Si023367m.g scaffold_3:46155062..46160910 + 561 186 4
    SiGIF2 Seita.8G193300 Seita.8G193300.1 Si026850m.g scaffold_8:34062291..34066801− 639 212 4
    SiGIF3 Seita.9G104500 Seita.9G104500.1 Si037326m.g scaffold_9:6299035..6302512− 696 231 4
    下载: 导出CSV

    表  2  谷子SiGIFs蛋白的二级结构分析

    Table  2.   Secondary structure of SiGIFs

    蛋白名称
    Protein name
    α-螺旋
    Alpha
    helix/%
    β-折叠
    Extended
    strand/%
    β-转角
    Beta
    turn/%
    无规则卷曲
    Random
    coil/%
    SiGIF1 34.95 3.23 5.91 55.91
    SiGIF2 34.43 3.77 5.19 56.60
    SiGIF3 35.50 11.26 11.69 41.56
    平均 Average 34.96 6.09 7.60 51.36
    下载: 导出CSV

    表  3  谷子SiGIFs蛋白潜在磷酸化位点分析

    Table  3.   Potential phosphorylation sites in SiGIFs

    谷子GIF 家族
    SiGIF gene family
    位点数量 Site number
    丝氨酸
    Serine
    苏氨酸
    Threoine
    酪氨酸
    Tyrosine
    SiGIF1870
    SiGIF2570
    SiGIF31712
    下载: 导出CSV
  • [1] DEBERNARDI J M, MECCHIA M A, VERCRUYSSEN L, et al. Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity [J]. Plant Journal, 2014, 79(3): 413−426. doi: 10.1111/tpj.12567
    [2] KIM J H. Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants [J]. BMB Reports, 2019, 52(4): 227−238. doi: 10.5483/BMBRep.2019.52.4.051
    [3] LEE B H, KO J H, LEE S, et al. The Arabidopsis GRF-interacting factor gene family performs an overlapping function in determining organ size as well as multiple developmental properties [J]. Plant Physiology, 2009, 151(2): 655−668. doi: 10.1104/pp.109.141838
    [4] KIM J H, KENDE H. A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis [J]. PNAS, 2004, 101(36): 13374−13379. doi: 10.1073/pnas.0405450101
    [5] HORIGUCHI G, KIM G T, TSUKAYA H. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana [J]. The Plant Journal, 2005, 43(1): 68−78. doi: 10.1111/j.1365-313X.2005.02429.x
    [6] VERCRUYSSEN L, VERKEST A, GONZALEZ N, et al. ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development [J]. The Plant Cell, 2014, 26(1): 210−229. doi: 10.1105/tpc.113.115907
    [7] LIANG G, HE H, LI Y, et al. Molecular mechanism of microRNA396 mediating pistil development in Arabidopsis [J]. Plant Physiology, 2014, 164(1): 249−258. doi: 10.1104/pp.113.225144
    [8] ERCOLI M F, FERELA A, DEBERNARDI J M, et al. GIF transcriptional coregulators control root meristem homeostasis [J]. The Plant Cell, 2018, 30(2): 347−359. doi: 10.1105/tpc.17.00856
    [9] GAO F, WANG K, LIU Y, et al. Blocking miR396 increases rice yield by shaping inflorescence architecture [J]. Nature Plants, 2016, 2: 15196. doi: 10.1038/nplants.2015.196
    [10] NELISSEN H, EECKHOUT D, DEMUYNCK K, et al. Dynamic changes in ANGUSTIFOLIA3 complex composition reveal a growth regulatory mechanism in the maize leaf [J]. The Plant Cell, 2015, 27(6): 1605−1619. doi: 10.1105/tpc.15.00269
    [11] JIA G Q, HUANG X H, ZHI H, et al. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica) [J]. Nature Genetics, 2013, 45(8): 957−961. doi: 10.1038/ng.2673
    [12] BENNETZEN J L, SCHMUTZ J, WANG H, et al. Reference genome sequence of the model plant Setaria [J]. Nature Biotechnology, 2012, 30(6): 555−561. doi: 10.1038/nbt.2196
    [13] ZHANG G Y, LIU X, QUAN Z W, et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential [J]. Nature Biotechnology, 2012, 30(6): 549−554. doi: 10.1038/nbt.2195
    [14] YANG Z R, ZHANG H S, LI X K, et al. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system [J]. Nature Plants, 2020, 6(9): 1167−1178. doi: 10.1038/s41477-020-0747-7
    [15] 张杰伟, 丁莉萍, 陈亚娟, 等. 杨树磷酸肌醇特异性磷脂酶C基因家族鉴定与分析 [J]. 福建农业学报, 2016, 31(11):1181−1186.

    ZHANG J W, DING L P, CHEN Y J, et al. Genome-wide analysis and identification of phosphoinositide-specific phospholipase C gene family in poplar(Populus trichocarpa) [J]. Fujian Journal of Agricultural Sciences, 2016, 31(11): 1181−1186.(in Chinese)
    [16] BAILEY T L, JOHNSON J, GRANT C E, et al. The MEME suite [J]. Nucleic Acids Research, 2015, 43(W1): W39−W49. doi: 10.1093/nar/gkv416
    [17] GEOURJON C, DELÉAGE G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments [J]. Bioinformatics, 1995, 11(6): 681−684. doi: 10.1093/bioinformatics/11.6.681
    [18] SIEVERS F, WILM A, DINEEN D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega [J]. Molecular Systems Biology, 2011, 7: 539. doi: 10.1038/msb.2011.75
    [19] HUANG X Y, LIU G, ZHANG W W. Genome-wide analysis of LBD (LATERAL ORGAN BOUNDARIES domain) gene family in Brassica rapa [J]. Brazilian Archives of Biology and Technology, 2018, 61: e18180049. doi: 10.1590/1678-4324-2018180049
    [20] ZHANG J B, WANG X P, WANG Y C, et al. Genome-wide identification and functional characterization of cotton (Gossypium hirsutum) MAPKKK gene family in response to drought stress [J]. BMC Plant Biology, 2020, 20(1): 1−14. doi: 10.1186/s12870-019-2170-7
    [21] MAO J X, ZHANG X S, ZHANG W J, et al. Genome-wide identification, characterization and expression analysis of the MITF gene in Yesso scallops (Patinopecten yessoensis) with different shell colors [J]. Gene, 2019, 688: 155−162. doi: 10.1016/j.gene.2018.11.096
    [22] LU Y Z, MENG Y L, ZENG J, et al. Coordination between GROWTH-REGULATING FACTOR1 and GRF-INTERACTING FACTOR1 plays a key role in regulating leaf growth in rice [J]. BMC Plant Biology, 2020, 20(1): 200. doi: 10.1186/s12870-020-02417-0
    [23] ZAN T, ZHANG L, XIE T T, et al. Genome-wide identification and analysis of the growth-regulating factor (GRF) gene family and GRF-interacting factor family in Triticum aestivum L [J]. Biochemical Genetics, 2020, 58(5): 705−724. doi: 10.1007/s10528-020-09969-8
    [24] ZHANG J W, ZHANG Z B, ZHU D, et al. Expression and initial characterization of a Phosphoinositide-specific phospholipase C from Populus tomentosa [J]. Journal of Plant Biochemistry and Biotechnology, 2015, 24(3): 338−346. doi: 10.1007/s13562-014-0279-1
    [25] LI S C, GAO F Y, XIE K L, et al. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice [J]. Plant Biotechnology Journal, 2016, 14(11): 2134−2146. doi: 10.1111/pbi.12569
    [26] LIU W Y, ZHANG B, HE W Y, et al. Characterization of in vivo phosphorylation modification of differentially accumulated proteins in cotton fiber-initiation process [J]. Acta Biochimica et Biophysica Sinica, 2016, 48(8): 756−761. doi: 10.1093/abbs/gmw055
    [27] WANG Q, QIN G C, CAO M, et al. A phosphorylation-based switch controls TAA1-mediated auxin biosynthesis in plants [J]. Nature Communications, 2020, 11(1): 679. doi: 10.1038/s41467-020-14395-w
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  1269
  • HTML全文浏览量:  400
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-07
  • 修回日期:  2021-06-06
  • 网络出版日期:  2021-08-10
  • 刊出日期:  2021-08-28

目录

    /

    返回文章
    返回