Correlation Between Flavonoids Content and SSR Markers of Tartary Buckwheat
-
摘要:
目的 开展苦荞籽粒总黄酮含量与SSR标记的关联分析,挖掘与黄酮含量相关的分子标记,为高黄酮含量苦荞品种的遗传改良提供依据。 方法 以193份苦荞种质为供试材料,基于62对SSR引物分析了供试种质的遗传多样性,对总黄酮含量和SSR标记进行了关联分析。 结果 193个种质籽粒总黄酮含量的变幅为1.04%~2.99%,变异系数为27.93%。62对引物在193个种质中共扩增出267个等位基因,每个SSR位点平均检测到2.45个有效等位基因,基因多样性为0.503,Shannon信息指数为0.942,观测杂合度为0.513,引物多态信息量为0.74。群体结构分析将193份种质划分为3个亚群。基于广义线性模型(GLM)共检测到5个与籽粒总黄酮含量显著关联的SSR标记,表型贡献率为6.3%~12.9%,其中标记TatG0124(12.9%)和S6853(8.5%)的表型贡献率较高。 结论 供试苦荞种质遗传多样性丰富,可用于苦荞重要农艺和品质性状的关联分析。TatG0124和SSR6853可能是控制籽粒黄酮含量的重要位点,对改良苦荞籽粒黄酮含量具有重要意义。 Abstract:Objective Correlation between the flavonoids content and associated markers was analyzed for genetic improvement studies on Tartary buckwheat. Method Sixty-two SSR primer pairs were used to assess the genetic diversity of 193 Tartary buckwheat germplasms. The SSR markers closely related to the total flavonoids content were selected by association analysis. Result The total flavonoids content of 193 Tartary buckwheat germplasms varied from 1.04% to 2.99% with a coefficient variation of 27.93%. Sixty-two pairs of SSR primers amplified 267 polymorphic sites with an average number of effective alleles of 2.45. The mean values of gene diversity, Shannon index, observed heterozygosity and polymorphism information content of SSR markers were 0.503, 0.942, 0.513 and 0.74, respectively. The population structure analysis divided the 193 germplasms into 3 subgroups. Five SSR markers were determined to be significantly associated with flavonoids content by the general linear model (GLM). The phenotypic variations ranged from 6.3% to 12.9% with TatG0124 at 12.9% and S6853 at 8.5% being the higher markers. Conclusion The germplasms used in this study were diverse in genetic variation and feasible for related genome-wide mapping on important traits of Tartary buckwheat. The loci, TatG0124 and S6853, appeared to closely associate with the flavonoids content of Tartary buckwheat and were considered to be potentially useful for breeding new varieties with high content of the functional components. -
Key words:
- Tartary buckwheat /
- SSR marker /
- flavonoids content /
- genetic diversity /
- population structure /
- correlation analysis
-
表 1 基于62对SSR引物的193个苦荞种质的遗传多样性参数
Table 1. Genetic diversity indicators of 193 Tartary buckwheat germplasms based on 62 pairs of SSR primers
序号 Index 引物名称 Primer name 等位基因数 Na 有效等位基因数 Ne Shannon信息指数 I 观察杂合度 Ho 基因多样性 He 多态信息量 PIC 1 S7582 4 2.253 0.918 0.932 0.556 0.82 2 S9023 5 4.120 1.497 0.813 0.757 0.90 3 S7676 3 1.451 0.519 0.005 0.311 0.58 4 S7622 3 1.418 0.568 0.130 0.295 0.61 5 S7678 4 3.110 1.224 0.802 0.678 0.77 6 S7642 4 3.501 1.320 0.578 0.714 0.81 7 S8993 3 2.196 0.858 0.865 0.545 0.73 8 S9065 5 2.309 1.002 0.771 0.567 0.79 9 S9095 3 1.442 0.532 0.328 0.307 0.77 10 S8951 3 1.696 0.727 0.151 0.410 0.64 11 S9007 3 2.813 1.063 0.188 0.644 0.73 12 S8983 3 1.759 0.736 0.109 0.432 0.64 13 S9045 3 1.099 0.206 0.000 0.09 0.66 14 S7606 3 2.089 0.802 0.839 0.521 0.73 15 S7662 3 1.709 0.721 0.109 0.415 0.65 16 S2218 5 2.400 1.012 0.844 0.583 0.72 17 S2298 3 1.833 0.753 0.479 0.455 0.80 18 S2314 3 1.241 0.389 0.026 0.194 0.56 19 S2158 5 3.401 1.351 0.797 0.706 0.82 20 S2214 4 3.486 1.314 0.438 0.713 0.81 21 S2252 3 1.840 0.749 0.469 0.457 0.66 22 S2288 4 2.471 1.033 0.875 0.595 0.74 23 S6827 4 1.875 0.814 0.417 0.467 0.67 24 S6865 3 2.038 0.780 0.766 0.509 0.60 25 S2234 5 3.378 1.348 0.870 0.704 0.83 26 S6871 5 2.274 0.938 0.901 0.560 0.77 27 S6821 5 3.136 1.230 0.672 0.681 0.82 28 S6873 4 2.752 1.187 0.266 0.637 0.85 29 S2216 6 2.695 1.193 0.948 0.629 0.87 30 S2310 5 2.173 0.879 0.88 0.540 0.70 31 S2312 7 1.535 0.784 0.094 0.349 0.85 32 S6853 7 3.615 1.453 0.953 0.723 0.88 33 S6805 4 1.350 0.470 0.271 0.259 0.80 34 S6891 3 1.244 0.366 0.000 0.196 0.20 35 S6875 4 2.178 0.863 0.880 0.541 0.78 36 S6789 4 1.505 0.698 0.125 0.335 0.79 37 S6843 3 1.299 0.464 0.078 0.230 0.79 38 S6859 4 1.582 0.664 0.036 0.368 0.72 39 S7654 5 2.811 1.151 0.438 0.644 0.78 40 S7668 4 2.219 0.893 0.813 0.549 0.61 41 S6819 5 3.461 1.325 0.734 0.711 0.80 42 S6811 3 2.105 0.796 0.964 0.525 0.53 43 S5216 3 1.021 0.065 0.000 0.021 0.67 44 S5196 3 2.128 0.82 0.870 0.530 0.57 45 S5166 4 2.300 0.922 0.875 0.565 0.79 46 S5176 3 1.134 0.252 0.000 0.118 0.69 47 S9013 4 2.544 1.026 0.964 0.607 0.73 48 S8963 4 1.065 0.165 0.005 0.061 0.52 49 S8969 3 1.321 0.489 0.135 0.243 0.59 50 S8947 4 1.295 0.412 0.219 0.228 0.71 51 S2304 4 2.228 0.951 0.214 0.551 0.82 52 TatG0242 8 7.283 2.031 0.747 0.863 0.91 53 TatG0164 4 2.248 0.923 0.124 0.555 0.78 54 TatG0227 6 2.625 1.148 0.916 0.619 0.83 55 TatG0272 4 2.391 1.096 0.202 0.582 0.79 56 TatG0188 5 2.542 1.118 0.006 0.607 0.79 57 TatG0124 6 4.437 1.573 0.787 0.775 0.89 58 TatG0004 8 4.684 1.744 0.433 0.787 0.91 59 TatG0156 6 4.370 1.562 0.899 0.771 0.88 60 TatG0214 5 3.526 1.390 0.579 0.716 0.87 61 TatG0184 9 4.248 1.699 0.646 0.765 0.91 62 TatG0175 5 3.851 1.421 0.944 0.740 0.85 表 2 苦荞种质各亚群的遗传多样性指数
Table 2. Genetic diversity indicators for each Tartary buckwheat subgroup
亚群
Subgroup样本数
N等位基因数
Na有效等位基因数
NeShannon信息指数
I观察杂合度
Ho基因多样性
HePOP1 88 4.21 2.42 0.943 0.493 0.513 POP2 90 3.74 2.33 0.870 0.502 0.484 POP3 15 2.95 2.27 0.800 0.576 0.468 表 3 各亚群成对Fst系数(下三角) 和Nei’s遗传距离(上三角)
Table 3. Pairwise estimated Fst (below diagonal) and Nei’s genetic distance (above diagonal) for subgroups
亚群 Subgroup POP 1 POP 2 POP 3 POP1 0.065 0.076 POP2 0.030 0.026 POP3 0.037 0.014 注:全部Fst差异显著(P<0.001)。
Note: All Fst values are significant (P<0.001).表 4 显著LD的SSR标记成对组合数的比例和D'(标准不平衡系数)
Table 4. Percentage and D' (standardized disequilibrium) value of pairs with significant LD
群体与亚群
Population
and
subgroup种质数
No. of germplasmsLD的SSR标记
成对组合数
No. of SSR
marker pairs
in LDLD的SSR标记
成对组合所占比例
Percentage of
SSR marker
pairs in LDD’ 群体 Population 193 644 34.06 0.277 Pop1 88 90 4.76 0.412 Pop2 90 206 10.89 0.304 Pop3 15 97 5.13 0.493 表 5 与苦荞籽粒黄酮含量显著相关的SSR标记
Table 5. SSR markers significantly associated with flavonoids content in Tartary buckwheat grains
SSR标记
SSR markerF值
F value显著水平
P表型贡献率
R2/ %S2310 3.146 0.0095 7.9 S2304 2.423 0.0373 6.3 TatG0124 1.848 0.0401 12.9 S2312 2.157 0.0402 7.7 S6853 2.066 0.0415 8.5 -
[1] 陈庆富. 荞麦属植物科学[M]. 北京: 科学出版社, 2012: 10 − 11. [2] 黄凯丰, 李振宙, 王炎, 等. 我国荞麦高产栽培生理研究进展 [J]. 贵州师范大学学报(自然科学版), 2019, 37(1):115−120. doi: 10.16614/j.gznuj.zrb.2019.01.019HUANG K F, LI Z Z, WANG Y, et al. Research progress on physiology of buckwheat under high-yield cultivation [J]. Journal of Guizhou Normal University (Natural Sciences), 2019, 37(1): 115−120.(in Chinese) doi: 10.16614/j.gznuj.zrb.2019.01.019 [3] 吴韬, 肖丽, 李伟丽. 苦荞的营养与功能成分研究进展 [J]. 西华大学学报(自然科学版), 2021, 40(2):91−96, 109. doi: 10.12198/j.issn.1673-159X.3521WU T, XIAO L, LI W L. Research progress of chemicals in Tartary buckwheat [J]. Journal of Xihua University (Natural Science Edition), 2021, 40(2): 91−96, 109.(in Chinese) doi: 10.12198/j.issn.1673-159X.3521 [4] LUTHAR Z, GOLOB A, GERM M, et al. Tartary buckwheat in human nutrition [J]. Plants, 2021, 10(4): 700. doi: 10.3390/plants10040700 [5] 王璐瑗, 荣玉萍, 黄娟, 等. 211份金荞麦收集系根茎黄酮含量的分析评价 [J]. 贵州师范大学学报(自然科学版), 2019, 37(4):25−30, 48.WANG L Y, RONG Y P, HUANG J, et al. Analysis and evaluation of the flavonoid content of rhizomes of 211 different Golden buckwheat accessions(Fagopyrum cymosum complex) [J]. Journal of Guizhou Normal University (Natural Sciences), 2019, 37(4): 25−30, 48.(in Chinese) [6] 刘三才, 李为喜, 刘方, 等. 苦荞麦种质资源总黄酮和蛋白质含量的测定与评价 [J]. 植物遗传资源学报, 2007, 8(3):317−320. doi: 10.3969/j.issn.1672-1810.2007.03.014LIU S C, LI W X, LIU F, et al. Identificaiton and evaluation of total flavones and protein content in Tartary buckwheat germplasm [J]. Journal of Plant Genetic Resources, 2007, 8(3): 317−320.(in Chinese) doi: 10.3969/j.issn.1672-1810.2007.03.014 [7] 吕丹, 黎瑞源, 郑冉, 等. 苦荞种质资源籽粒黄酮含量及籽粒性状的变异分析 [J]. 分子植物育种, 2020, 18(14):4762−4774.LYU D, LI R Y, ZHENG R, et al. Variation analysis of flavonoids content in seeds and seed traits of Tartary buckwheat germplasm resources [J]. Molecular Plant Breeding, 2020, 18(14): 4762−4774.(in Chinese) [8] 吕丹, 黎瑞源, 郑冉, 等. 苦荞“翅米荞×野苦荞”重组自交系群体籽粒黄酮含量及籽粒性状的分析 [J]. 贵州师范大学学报(自然科学版), 2019, 37(6):40−46.LYU D, LI R Y, ZHENG R, et al. Analysis of flavonoids content in grains and grain traits on ‘Chimiqiao' and ‘Yekuqiao' recombinant inbred lines population of Tartary buckwheat [J]. Journal of Guizhou Normal University (Natural Sciences), 2019, 37(6): 40−46.(in Chinese) [9] 郑冉, 黎瑞源, 吕丹, 等. 苦荞重组自交系群体籽粒黄酮含量与产量性状分析 [J]. 广西植物, 2021, 41(2):216−224. doi: 10.11931/guihaia.gxzw201906046ZHENG R, LI R Y, LYU D, et al. Variation analysis of flavonoid contents in seeds and yield traits on recombinant inbred line population of Tartary buckwheat [J]. Guihaia, 2021, 41(2): 216−224.(in Chinese) doi: 10.11931/guihaia.gxzw201906046 [10] MATSUI K, WALKER A R. Biosynthesis and regulation of flavonoids in buckwheat [J]. Breeding Science, 2020, 70(1): 74−84. doi: 10.1270/jsbbs.19041 [11] SHI T X, LI R Y, ZHENG R, et al. Mapping QTLs for 1000-grain weight and genes controlling hull type using SNP marker in Tartary buckwheat (Fagopyrum tataricum) [J]. BMC Genomics, 2021, 22: 142. doi: 10.1186/s12864-021-07449-w [12] ZHANG L J, LI X X, MA B, et al. The Tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance [J]. Molecular Plant, 2017, 10(9): 1224−1237. doi: 10.1016/j.molp.2017.08.013 [13] ZHANG K X, HE M, FAN Y, et al. Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits [J]. Genome Biology, 2021, 22(1): 23. doi: 10.1186/s13059-020-02217-7 [14] 马名川, 刘龙龙, 刘璋, 等. 苦荞全基因组SSR位点特征分析与分子标记开发 [J]. 作物杂志, 2021(1):38−46.MA M C, LIU L L, LIU Z, et al. Analysis of SSR loci in whole genome and development of molecular markers in Tartary buckwheat [J]. Crops, 2021(1): 38−46.(in Chinese) [15] 贺润丽, 尹桂芳, 李春花, 等. 苦荞种皮转录组SSR位点信息分析及其分子标记的开发 [J]. 分子植物育种, 2020, 18(18):6085−6092.HE R L, YIN G F, LI C H, et al. Development of molecular markers and SSR loci information analysis of transcriptome in Tartary buckwheat seed coat [J]. Molecular Plant Breeding, 2020, 18(18): 6085−6092.(in Chinese) [16] 杜伟, 王东航, 侯思宇, 等. 基于苦荞全长转录组测序开发SSR标记及遗传多样性分析 [J]. 植物生理学报, 2020, 56(7):1432−1444.DU W, WANG D H, HOU S Y, et al. Development of SSR markers based on full-length transcriptome sequencing and its application for genetic diversity analysis in Fagopyrum tataricum [J]. Plant Physiology Journal, 2020, 56(7): 1432−1444.(in Chinese) [17] SHI T X, LI R Y, CHEN Q J, et al. De novo sequencing of seed transcriptome and development of genic-SSR markers in common buckwheat (Fagopyrum esculentum) [J]. Molecular Breeding, 2017, 37(12): 1−15. [18] 黎瑞源, 潘凡, 陈庆富, 等. 苦荞转录组EST-SSR发掘及多态性分析 [J]. 中国农业科技导报, 2015, 17(4):42−52.LI R Y, PAN F, CHEN Q F, et al. Excavation and polymorphism analysis of EST-SSR from transcriptome of Tartary buckwheat [J]. Journal of Agricultural Science and Technology, 2015, 17(4): 42−52.(in Chinese) [19] 黎瑞源, 石桃雄, 陈其皎, 等. 中国35个苦荞审定品种EST-SSR指纹图谱构建与遗传多样性分析 [J]. 植物科学学报, 2017, 35(2):267−275.LI R Y, SHI T X, CHEN Q J, et al. Construction of EST-SSR fingerprinting and analysis of genetic diversity of thirty-five registered Tartary buckwheat cultivars (Fagopyrum tataricum) in China [J]. Plant Science Journal, 2017, 35(2): 267−275.(in Chinese) [20] 李春花, 陈蕤坤, 王艳青, 等. 利用SSR标记构建云南苦荞种质资源分子身份证 [J]. 分子植物育种, 2019, 17(5):1575−1582.LI C H, CHEN R K, WANG Y Q, et al. Establishment of the molecular ID for Yunnan Tartary buckwheat germplasm resources based on SSR marker [J]. Molecular Plant Breeding, 2019, 17(5): 1575−1582.(in Chinese) [21] 屈洋, 周瑜, 王钊, 等. 苦荞产区种质资源遗传多样性和遗传结构分析 [J]. 中国农业科学, 2016, 49(11):2049−2062. doi: 10.3864/j.issn.0578-1752.2016.11.002QU Y, ZHOU Y, WANG Z, et al. Analysis of genetic diversity and structure of Tartary buckwheat resources from production regions [J]. Scientia Agricultura Sinica, 2016, 49(11): 2049−2062.(in Chinese) doi: 10.3864/j.issn.0578-1752.2016.11.002 [22] 徐笑宇, 方正武, 杨璞, 等. 苦荞遗传多样性分析与核心种质筛选 [J]. 干旱地区农业研究, 2015, 33(1):268−277.XU X Y, FANG Z W, YANG P, et al. Genetic diversity analysis of Tartary buckwheat and selection of core collections [J]. Agricultural Research in the Arid Areas, 2015, 33(1): 268−277.(in Chinese) [23] 杨学文, 丁素荣, 胡陶, 等. 104份苦荞种质的遗传多样性分析 [J]. 作物杂志, 2013(6):13−18. doi: 10.3969/j.issn.1001-7283.2013.06.004YANG X W, DING S R, HU T, et al. Genetic diversity of 104 Tartary buckwheat accessions [J]. Crops, 2013(6): 13−18.(in Chinese) doi: 10.3969/j.issn.1001-7283.2013.06.004 [24] HOU S Y, SUN Z X, BIN L H, et al. Genetic diversity of buckwheat cultivars (Fagopyrum tartaricum Gaertn.) assessed with SSR markers developed from genome survey sequences [J]. Plant Molecular Biology Reporter, 2016, 34(1): 233−241. doi: 10.1007/s11105-015-0907-5 [25] 黎瑞源, 梁龙兵, 石桃雄, 等. 苦荞重组自交系群体F5代SSR遗传图谱的构建 [J]. 贵州师范大学学报(自然科学版), 2017, 35(4):31−45.LI R Y, LIANG L B, SHI T X, et al. Construction of a microsatellite-based genetic map of Tartary buckwheat using F5 recombinant inbred lines [J]. Journal of Guizhou Normal University (Natural Sciences), 2017, 35(4): 31−45.(in Chinese) [26] 杨美. 甘蓝型油菜根系形态对低磷胁迫的反应及其QTL分析[D]. 武汉: 华中农业大学, 2010.YANG M. Response of root morphology to low phosphorus stress and QTL analysis in Brassica napus[D]. Wuhan: Huazhong Agricultural University, 2010. (in Chinese). [27] 赵宇慧, 李秀秀, 陈倬, 等. 生物信息学分析方法Ⅰ: 全基因组关联分析概述 [J]. 植物学报, 2020, 55(6):715−732. doi: 10.11983/CBB20091ZHAO Y H, LI X X, CHEN Z, et al. An overview of genome-wide association studies in plants [J]. Chinese Bulletin of Botany, 2020, 55(6): 715−732.(in Chinese) doi: 10.11983/CBB20091 [28] 徐刚标. 植物群体遗传学[M]. 北京: 科学出版社, 2012: 193 − 200. [29] 马名川, 张丽君, 刘璋, 等. 基于SSR标记的山西省不同地区苦荞遗传多样性分析 [J]. 山西农业大学学报(自然科学版), 2021, 41(3):25−31.MA M C, ZHANG L J, LIU Z, et al. Analysis of genetic diversity of Tartary buckwheat from different regions of Shanxi Province based on SSR marker [J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2021, 41(3): 25−31.(in Chinese) [30] GUPTA N, SHARMA S K, RANA J C, et al. AFLP fingerprinting of Tartary buckwheat accessions (Fagopyrum tataricum) displaying rutin content variation [J]. Fitoterapia, 2012, 83(6): 1131−1137. doi: 10.1016/j.fitote.2012.04.015