High-Throughput Sequencing on Fungal Diversity in Potato Rhizosphere Soil Infested by Root-knot Nematodes
-
摘要:
目的 分析根结线虫对马铃薯根际土壤真菌群落多样性的影响。 方法 通过高通量测序技术、土壤性质测定及生物信息学技术分析感染根结线虫马铃薯和健康马铃薯根际土壤真菌群落多样性差异。 结果 从6个土壤样品中共获得3界12门34纲77目171科332属526种的土壤真菌。对物种多样性指数分析后,发现感染根结线虫马铃薯病株与健康马铃薯植株的根际土壤真菌群落多样性和土壤性质均存在显著性差异。对6个样品进行物种组成分析后,在门水平中,感病植株根际土壤真菌Basidiomycota丰度较健康植株根际土壤真菌丰度高,Ascomycota丰度低于健康植株根际土壤;在科水平中,病株根际土壤丰度较高的菌群有Nectriaceae和Trimorphomycetaceae;在属水平中,健康植株根际土壤丰度较高的菌群为镰刀菌属Fusarium、被孢霉属Mortierella和未知分类毛壳菌科属unclassified_f_Chaetomiaceae。 结论 感染根结线虫的马铃薯与健康马铃薯根际土壤真菌群落丰度在门、科和属水平上均存在差异,为进一步研究马铃薯根结线虫的发生和防治提供了新的思路。 Abstract:Objective Diversity of the rhizosphere soil fungal community in potato field as affected by the presence of root-knot nematodes was investigated using high-throughput sequencing technique. Methods The properties and bioinformatics of rhizosphere soils surrounding healthy and infested potato plants were compared to analyze the possible effects of differential fungal community on the occurrence and control of the disease. Results There were 526 fungi species belonging to 332 genera, 171 families, 77 orders, 34 classes, 12 phyla, and 3 kingdoms identified from the 6 field specimens. Significantly differentiations on the fungal community diversity and properties of the rhizosphere soils on the healthy and infested potato lots were found. In the infected areas, Basidiomycota was the more abundant phylum, but Ascomycota less, than on the healthy lots. At family level, Nectriaceae and Trimorphomycetaceae were more abundantly found in the soil of diseased plants, while at genus level, Fusarium, Mortierella, and some unclassified Chaetomiaceae more richly in the soil of healthy plants. Conclusion Significant differences in the abundance of fungi in the rhizosphere soils of potatoes infested by the root-knot nematodes and the healthy counterparts were found at phylum, family, and genus levels. The information would aid further study on the occurrence and control of potato root-knot nematodes. -
表 1 不同样品土壤性质
Table 1. Properties of soil specimens
样品编号
Sample IDpH 有机质
OM/(g·kg−1)速效磷
AP/(mg·kg−1)速效钾
AK/(mg·kg−1)速效氮
AN/(mg·kg−1)MLE1 4.72±0.05 b 1.33±0.20 b 277.37±0.78 c 423.51±0.32 bc 57.39±0.28 de MLE2 4.62±0.03 b 1.27±0.14 b 265.43±0.63 d 420.19±0.19 c 56.12±0.25 e MLE3 4.80±0.02 b 1.28±0.30 b 278.54±0.24 c 425.85±0.18 ab 60.44±0.19 cd MLCK1 5.13±0.13 a 2.33±0.33 a 286.83±0.56 b 426.92±0.45 ab 66.41±0.78 a MLCK2 5.30±0.32 a 2.82±0.18 a 293.35±0.36 a 427.32±0.67 ab 64.00±0.57 ab MLCK3 5.22±0.46 a 2.74±0.36 a 279.72±0.67 c 428.28±0.46 a 61.23±0.42 bc 注:同列数据后不同小写字母表示差异显著(P<0.05),表2同。
Note: Different uppercase letters in the same column represented significant difference(P<0.05), The same as Table 2.表 2 不同样品土壤真菌群落的多样性指数
Table 2. Diversity indices on fungal communities in soil specimens
样品编号
Sample ID原始序列
Original sequences有效序列
Effective sequences有效序列率
Effective data ratio多样性指数
Diversity index丰富度指数
Richness index覆盖率
CoverageShannon-Wiener指数
Shannon-Wiener
indexSimpson指数
Simpson
indexAce指数
Ace
indexChao指数
Chao
indexMLE1 52315 51714 0.989 2.83±0.10 c 0.18±0.04 b 744.88±0.42 d 677.05±0.78 d 0.997 MLE2 56393 55653 0.987 2.59±0.14 c 0.26±0.03 a 574.26±0.25 e 586.08±0.36 e 0.997 MLE3 65004 64006 0.985 3.64±0.32 b 0.06±0.01 c 731.93±0.12 d 763.33±0.25 c 0.997 MLCK1 64811 63193 0.975 4.13±0.05 a 0.06±0.01 c 960.73±0.36 c 975.25±0.65 b 0.997 MLCK2 68180 65857 0.966 4.09±0.23 a 0.05±0.01 c 977.19±0.83 b 978.84±0.45 b 0.997 MLCK3 68295 66066 0.967 4.04±0.14 a 0.06±0.02 c 1013.80±0.46 a 1024.59±0.88 a 0.997 注:数据后不同小写字母表示处理间差异达显著水平
Note:Data with different lowercase letters indicated significant difference (P<0.05). -
[1] MARKS R, BRODIE B. Potato cyst nematodes, biology, distribution and control [J]. Potato Cyst Nematodes Biology Distribution and Control, 1998, 5(2): 79−86. [2] 徐春玲, 陈淳, 周春娜, 等. 马铃薯根际3种植物线虫种类记述 [J]. 华南农业大学学报, 2012, 33(2):167−170. doi: 10.3969/j.issn.1001-411X.2012.02.010XU C L, CHEN C, ZHOU C N, et al. Description of Three New Recorded Species of Plant Parasitic Nematodes Extracted from Rhizosphere of Potato in China [J]. Journal of South China Agricultural University, 2012, 33(2): 167−170.(in Chinese) doi: 10.3969/j.issn.1001-411X.2012.02.010 [3] OKA Y, KOLTAI H, BAR-EYAL M, et al. New strategies for the control of plant-parasitic Nematodes [J]. Pest Management Science, 2000, 56(11): 983−988. doi: 10.1002/1526-4998(200011)56:11<983::AID-PS233>3.0.CO;2-X [4] DACKMAN C, NORDBRING-HERTZ B. Fungal parasites of the cereal cyst nematode Heterodera avenae in southern Sweden [J]. Journal of Nematology, 1985, 17(1): 50−55. [5] KHAN T A, SAXENA S K. Effect of root-dip treatment with culture filtrates of soil fungi on multiplication of Meloidogyne javanica and yield of tomato [J]. Test of Agrochemical and Cultivars, 1997(18): 50−51. [6] TOJU H, TANABE A S, SATO H. Network hubs in root-associated fungal metacommunities [J]. Microbiome, 2018, 6(1): 116. doi: 10.1186/s40168-018-0497-1 [7] 杨树军, 雷丽萍, 祝明亮, 等. 烟草根结线虫生物防治方法应用研究 [J]. 西南农业学报, 2004, 17(S1):151−154.YANG S J, LEI L P, ZHU M L, et al. Screening of the parasitical fungi of root knot nematode in tobacco [J]. Southwestern China Journal of Agricultural Sciences, 2004, 17(S1): 151−154.(in Chinese) [8] MENDES R, KRUIJT M, DE BRUIJN I, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria [J]. Science, 2011, 332(6033): 1097−1100. doi: 10.1126/science.1203980 [9] UROZ S, BUEEÉ M, MURAT C, et al. Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil [J]. Env Microbiol Rep, 2010, 2(2): 281−288. doi: 10.1111/j.1758-2229.2009.00117.x [10] WEINERT N, PICENO Y, DING G C, et al. PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: Many common and few cultivar-dependent taxa [J]. FEMS Microbiology Ecology, 2011, 75(3): 497−506. doi: 10.1111/j.1574-6941.2010.01025.x [11] PIRES A C C, CLEARY D F R, ALMEIDA A, et al. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples [J]. Applied and Environmental Microbiology, 2012, 78(16): 5520−5528. doi: 10.1128/AEM.00386-12 [12] BULGARELLI D, ROTT M, SCHLAEPPI K, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota [J]. Nature, 2012, 488(7409): 91−95. doi: 10.1038/nature11336 [13] 楼骏, 柳勇, 李延, 等. 高通量测序技术在土壤微生物多样性研究中的研究进展 [J]. 中国农学通报, 2014, 30(15):256−260. doi: 10.11924/j.issn.1000-6850.2013-2513LOU J, LIU Y, LI Y, et al. Review of High-throughput sequencing techniques in studies of soil microbial diversity [J]. Chinese Agricultural Science Bulletin, 2014, 30(15): 256−260.(in Chinese) doi: 10.11924/j.issn.1000-6850.2013-2513 [14] 董艳辉, 于宇凤, 温鑫, 等. 基于高通量测序的藜麦连作根际土壤微生物多样性研究 [J]. 华北农学报, 2019, 34(2):205−211. doi: 10.7668/hbnxb.201751218DONG Y H, YU Y F, WEN X, et al. Studies on diversity of rhizosphere microorganism in quinoa continuous cropping Soil by High Throughput Sequencing [J]. Acta Agriculture Boreali-Sinica, 2019, 34(2): 205−211.(in Chinese) doi: 10.7668/hbnxb.201751218 [15] 张骏达, 李素艳, 孙向阳, 等. 基于高通量测序技术的不同年代公园绿地土壤细菌多样性 [J]. 微生物学通报, 2019, 46(1):65−74.ZHANG J D, LI S Y, SUN X Y, et al. Analysis of soil bacterial diversity in urban parks with different ages by high throughput sequencing [J]. Microbiology China, 2019, 46(1): 65−74.(in Chinese) [16] 汪娅婷, 付丽娜, 姬广海, 等. 基于高通量测序技术研究云南玉米根际微生物群落多样性 [J]. 江西农业大学学报, 2019, 41(3):491−500.WANG Y T, FU L N, JI G H, et al. A study of the microbial community diversity of corn rhizosphere in Yunnan province based on High-Throughput Sequencing Technique [J]. Acta Agriculturae Universitatis Jiangxiensis, 2019, 41(3): 491−500.(in Chinese) [17] 王艳云, 郭笃发. 不同植物类型下土壤真菌群落研究 [J]. 基因组学与应用生物学, 2017, 36(2):696−701.WANG Y Y, GUO D F. Study on Soil Fungal Community under Different Plant Types [J]. Genomics and Applied Biology, 2017, 36(2): 696−701.(in Chinese) [18] ADAMS R I, MILETTO M, TAYLOR J W, et al. Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances [J]. The ISME Journal, 2013, 7(7): 1262−1273. doi: 10.1038/ismej.2013.28 [19] LAURENT P, VOIBLET C, TAGU D, et al. A novel class of ectomycorrhiza-regulated cell wall polpeptides in Pisolithus tinctorius [J]. Mol Plant Microbe, 1999, 12(10): 862−871. doi: 10.1094/MPMI.1999.12.10.862 [20] HELGASON T, FITTER A H. Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota) [J]. Journal of Experimental Botany, 2009, 60(9): 2465−2480. doi: 10.1093/jxb/erp144 [21] NONAKA K, KANETA T, ŌMURA S, et al. Mariannaea macrochlamydospora, a new hyphomycete (Nectriaceae) from soil in the Bonin Islands, Japan [J]. Mycoscience, 2015, 56(1): 29−33. doi: 10.1016/j.myc.2014.02.001