Changes on Organic Acids in Chinese Fir Seedlings under Simulated Al-stress
-
摘要:
目的 研究铝胁迫对杉木幼苗有机酸含量的影响,以期阐明杉木有机酸对铝胁迫的响应特征。 方法 以杉木幼苗为材料,采用营养液培养法,研究不同浓度铝胁迫对杉木幼苗体内有机酸和根尖分泌有机酸含量水平的影响;通过相关性分析,揭示有机酸、铝含量之间的关系。 结果 在杉木针叶和根中均检测到草酸、酒石酸、L-苹果酸、抗坏血酸、柠檬酸和富马酸等6种有机酸。针叶中抗坏血酸含量最高,根中则以草酸和抗坏血酸的含量最多。铝胁迫下,针叶中酒石酸、L-苹果酸、抗坏血酸、柠檬酸、富马酸含量呈先升高后降低的变化趋势,草酸的含量则呈升高的趋势。当铝胁迫浓度为1 mmol·L−1时,针叶中L-苹果酸和富马酸的含量显著增加,其他4种有机酸含量则无显著变化。不同浓度铝胁迫下,根中6种有机酸含量均比对照显著降低。根尖分泌有机酸主要以草酸为主,还检测到少量L-苹果酸、抗坏血酸和乳酸。与对照相比,铝胁迫下根尖分泌的草酸含量均显著降低。 结论 杉木中不同有机酸以及不同组织对铝胁迫的响应不同。铝胁迫对杉木针叶中L-苹果酸和富马酸含量、根中6种有机酸含量和根尖草酸分泌量有显著影响。杉木根部比针叶对铝胁迫的响应更敏感,胁迫伤害更明显。 Abstract:Objective Effect of aluminum (Al)-stress on organic acids in seedlings of Chinese fir, Cunninghamia lanceolata (Lamb.) Hook, was examined in a simulated study. Method Nutrient culture solutions containing Al in varied concentrations were used to cultivate the seedlings. Organic acids in the plant tissues (i.e., needles and roots) and secreted from the root-tips of the seedlings grown in the media were determined to analyze the effect of Al-stress by a correlation analysis. Result Six organic acids including oxalic acid, tartaric acid, L-malate, ascorbic acid, citric acid, and fumaric acid were found in the needles and roots of the Chinese fir seedlings. Among them, ascorbic acid had the highest content in the needles, while ascorbic acid and oxalic acid in the roots. Under Al-stress, tartaric acid, L-malate, ascorbic acid, citric acid, and fumaric acid increased initially and followed by a decline in the needles, but the oxalic acid on a constant increase trend. At Al concentration of 1 mmol·L−1, L-malic acid and fumaric acid significantly increased, with no significant changes on the other acids, in the needles. The contents of the 6 organic acids in roots of the plants under varied Al-stresses were significantly lower than those of control. Aside from minute amounts of L-malate, ascorbic acid, and lactic acid, oxalic acid was the major organic acids found in the root-tip exudate. It was significantly reduced by the imposition of Al-stress. Conclusion The responses of Chinese fir seedlings to the simulated Al-stress varied with respect to the organic acid contents in the needles or roots and the root-tip secretion. Significant effects were observed on L-malic acid and fumaric acid in the needles and on all 6 organic acids in the roots, as well as oxalic acid exudated from the root-tips. Al-stress appeared to exert greater harm to the roots than the needles on a fir plant. -
Key words:
- Chinese fir /
- aluminum stress /
- organic acid /
- root exudates
-
表 1 各有机酸的线性范围、回归方程及相关系数
Table 1. Linear ranges, regression equations, and correlation coefficients on 6 organic acids
有机酸
Organic acids线性范围
Linear range/
(mg·L−1)线性回归方程
Regression
equation相关系数
R2
Correlation草酸 Oxalic acid 19.76~197.60 y=1963.12x+15.23 0.99994 酒石酸 Tartaric acid 99.80~998.00 y=2505.44x−5.58 0.99995 L-苹果酸 L-malate 99.80~998.00 y=1195.33x−3.26 0.99994 抗坏血酸 Ascorbic acid 19.96~199.60 y=2612.34x−8.32 0.99991 乳酸 Latic acid 2.00~19.96 y=2810.59x−3.90 0.99995 柠檬酸 Citric acid 199.60~1996.00 y=2892.76x−2.65 0.99996 琥珀酸 Succinic acid 99.80~998.00 y=855.67x−2.66 0.99994 富马酸 Fumaric acid 2.00~19.96 y=4446.75x−4.36 0.99996 表 2 铝胁迫下杉木针叶中有机酸含量的变化
Table 2. Changes on organic acids in needles of Chinese fir under Al-stress
(单位:g·kg−1) 有机酸
Organic acidCK 1 mmol·L−1 铝胁迫
1 mmol·L−1 Al concentration3 mmol·L−1 铝胁迫
3 mmol·L−1 Al concentration5 mmol·L−1 铝胁迫
5 mmol·L−1 Al concentration草酸 Oxalic acid 0.71±0.03 a 0.89±0.13 a 0.75±0.08 a 0.90±0.17 a 酒石酸 Tartaric acid 1.17±0.12 a 1.27±0.14 a 1.15±0.09 a 1.04±0.08 a L-苹果酸 L-malate 1.21±0.09 c 1.77±0.14 a 1.46±0.07 b 1.23±0.10 c 抗坏血酸 Ascorbic acid 16.23±0.69 ab 17.44±0.90 a 16.35±0.32 ab 15.37±0.69 b 柠檬酸 Citric acid 0.89±0.05 a 1.32±0.39 a 0.79±0.27 a 0.85±0.33 a 富马酸 Fumaric acid 5.84±0.32 c 9.90±1.11 a 10.51±0.76 a 7.59±0.30 b 注:同行数据后同小写字母表示差异显著(P<0.05)。下同。
Note: Different lowercase letters in the same line mean significant differences (P<0.05). The same below.表 3 铝胁迫下杉木根中有机酸含量的变化
Table 3. Changes on organic acids in roots of Chinese fir under Al-stress
(单位:g·kg−1) 有机酸
Organic acidCK 1 mmol·L−1 铝胁迫
1 mmol·L−1 Al concentration3 mmol·L−1 铝胁迫
3 mmol·L−1 Al concentration5 mmol·L−1 铝胁迫
5 mmol·L−1 Al concentration草酸 Oxalic acid 1.88±0.21 a 1.11±0.44 b 0.89±0.13 b 0.61±0.11 b 酒石酸 Tartaric acid 0.29±0.02 a 0.16±0.01 b 0.14±0.01b 0.13±0.03 b L-苹果酸 L-malate 1.82±0.01 a 1.19±0.13 b 0.91±0.41 bc 0.64±0.07 c 抗坏血酸 Ascorbic acid 3.49±0.75 a 1.91±0.19 b 1.57±0.17 b 1.49±0.25 b 柠檬酸 Citric acid 0.82±0.18 a 0.30±0.13 b 0.22±0.01 b 0.12±0.03 b 富马酸 Fumaric acid 9.51±2.36 a 0.88±0.05 b 0.57±0.02 b 0.50±0.02 b 表 4 铝胁迫对杉木根尖有机酸分泌的影响
Table 4. Effects of Al-stress on organic acids secreted from root-tips of Chinese fir
(单位:mg·L−1) 有机酸
Organic acidCK 1 mmol·L−1 铝胁迫
1 mmol·L−1 Al concentration3 mmol·L−1 铝胁迫
3 mmol·L−1 Al concentration5 mmol·L−1 铝胁迫
5 mmol·L−1 Al concentration草酸 Oxalic acid 126.57±18.69 a 67.79±18.43 b 85.85±23.15 b 71.81±4.01 b L-苹果酸 L-malate 7.42±3.21 a 4.62±1.41 ab 3.54±0.26 b 5.67±0.60 ab 抗坏血酸 Ascorbic acid 0.52±0.05 b 1.22±0.48 a 0.65±0.22 ab 0.85±0.18 ab 乳酸 Latic acid 0.05±0.02 a 0.03±0.02 a 0.03±0.01 a 0.05±0.02 a 表 5 杉木中有机酸、铝含量相关分析结果
Table 5. Correlations between organic acids and Al content in Chinese fir
有机酸
Organic acid针叶铝
Needle Al根铝
Root Al针叶/根有机酸
Needle organic acid/
root organic acid草酸 Oxalic acid 0.528 −0.666* −0.304 酒石酸 Tartaric acid −0.019 −0.927** 0.021 L-苹果酸 L-malate 0.491 −0.653* −0.145 抗坏血酸 Ascorbic acid 0.091 −0.917** −0.175 柠檬酸 Citric acid 0.238 −0.893** −0.104 富马酸 Fumaric acid 0.818** −0.995** −0.799** 注:*表示显著相关(P<0.05),**表示极显著相关(P<0.01)。
Note: * represented significant correlation(P<0.05),** represented extremely significant correlation (P<0.01). -
[1] 夏丽丹, 于姣妲, 邓玲玲, 等. 杉木人工林地力衰退研究进展 [J]. 世界林业研究, 2018, 31(2):37−42.XIA L D, YU J D, DENG L L, et al. Researches on soil decline of Chinese fir plantation [J]. World Forestry Research, 2018, 31(2): 37−42.(in Chinese) [2] 任继鹏, 张逸, 钱诚, 等. 南方酸性森林土壤中铝的形态分布与活化机理 [J]. 环境化学, 2011, 30(6):1131−1135.REN J P, ZHANG Y, QIAN C, et al. Fraction distribution and release mechanism of aluminum in acidic forest soils of southern China [J]. Environmental Chemistry, 2011, 30(6): 1131−1135.(in Chinese) [3] SIECIŃSKA J, NOSALEWICZ A. Aluminium toxicity to plants as influenced by the properties of the root growth environment affected by other co-stressors: A Review [J]. Reviews of Environmental Contamination and Toxicology, 2017, 243: 1−26. doi: 10.1007/398_2016_15 [4] RIAZ M, YAN L, WU X W, et al. Boron increases root elongation by reducing aluminum induced disorganized distribution of HG epitopes and alterations in subcellular cell wall structure of trifoliate orange roots [J]. Ecotoxicology and Environmental Safety, 2018, 165: 202−210. doi: 10.1016/j.ecoenv.2018.09.004 [5] 滕建晒, 陈健, 彭亮, 等. 水杨酸调控内源H2S缓解黑大豆铝胁迫的作用机理研究 [J]. 西北植物学报, 2019, 39(1):121−130.TENG J S, CHEN J, PENG L, et al. Mechanism of salicylic acid regulating endogenous H2S alleviating aluminum stress in the root of black soybean [J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(1): 121−130.(in Chinese) [6] 闫磊. 硼对柑橘枳砧根系铝毒缓解效应及机理研究[D]. 武汉: 华中农业大学, 2020.YAN L. Ameliorative role and mechanism of boron on aluminum toxicity in trifoliate orange roots[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese). [7] 梅映学. 碱蓬内生菌高Y1-1对镉和/或铝胁迫下水稻幼苗内源激素及有机酸含量的影响[D]. 沈阳: 沈阳师范大学, 2017.MEI Y X. Effect of endophyte Gao Y1-1 infection on endogenous hormones and organic acids of rice seedlings under Cd and/or Al stress[D]. Shenyang: Shenyang Normal University, 2017. (in Chinese). [8] YANG J L, FAN W, ZHENG S J. Mechanisms and regulation of aluminum-induced secretion of organic acid anions from plant roots [J]. Journal of Zhejiang University-Science B, 2019, 20(6): 513−527. doi: 10.1631/jzus.B1900188 [9] MA J F, RYAN P R, DELHAIZE E. Aluminium tolerance in plants and the complexing role of organic acids [J]. Trends in Plant Science, 2001, 6(6): 273−278. doi: 10.1016/S1360-1385(01)01961-6 [10] RANGEL A F, RAO I M, BRAUN H P, et al. Aluminum resistance in common bean (Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apices [J]. Physiologia Plantarum, 2010, 138(2): 176−190. doi: 10.1111/j.1399-3054.2009.01303.x [11] 庞叔薇, 康德梦, 王玉保, 等. 化学浸提法研究土壤中活性铝的溶出及形态分布 [J]. 环境化学, 1986, 5(3):68−76.PANG S W, KANG D M, WANG Y B, et al. Studies on the leaching of active aluminum from soil and the distribution of aluminum species by chemical extraction [J]. Environmental Chemistry, 1986, 5(3): 68−76.(in Chinese) [12] 孙宝利, 赤杰, 范中南, 等. 土壤及植物复合体系中有机酸的测定 [J]. 环境科学与技术, 2010, 33(9):130−134.SUN B L, CHI J, FAN Z N, et al. Determination of organic acids from integrated system of soil and plant [J]. Environmental Science & Technology, 2010, 33(9): 130−134.(in Chinese) [13] 戴勤. 铝诱导不同耐铝型速生桉无性系有机酸分泌及其代谢调控[D]. 南宁: 广西大学, 2014.DAI Q. The correspond regulation on Al-induced exudation and metabolism of organic acids of Al-resistance of Fast-growing in different Aluminum-resistant types of Eucalyptus Clones[D]. Nanning: Guangxi University, 2014. (in Chinese). [14] 刘玉民. 酸铝环境马尾松根系分泌物特性及其缓解铝毒的根际效应[D]. 重庆: 西南大学, 2018.LIU Y M. The characteristics and rhizosphere effects in alleviating Al-toxicity of Pinus massoniana root exudation in acid-aluminum environment[D]. Chongqing: Southwest University, 2018. (in Chinese). [15] 汪建飞, 沈其荣. 有机酸代谢在植物适应养分和铝毒胁迫中的作用 [J]. 应用生态学报, 2006, 17(11):2210−2216. doi: 10.3321/j.issn:1001-9332.2006.11.041WANG J F, SHEN Q R. Roles of organic acid metabolism in plant adaptation to nutrient deficiency and aluminum toxicity stress [J]. Chinese Journal of Applied Ecology, 2006, 17(11): 2210−2216.(in Chinese) doi: 10.3321/j.issn:1001-9332.2006.11.041 [16] 宋松泉. 植物线粒体的物质运输 [J]. 长沙水电师院(自然科学学报), 1988, 3(4):95−102.SONG S Q. Material transport in plant mitochondria [J]. Journal of Changsha Normal University of Water Resources and Electric Power(Natural Science Edition), 1988, 3(4): 95−102.(in Chinese) [17] 娄成后, 张蜀秋. 高等植物生长发育中同化物的转移 [J]. 科学通报, 2011, 56(30):2446−2460. doi: 10.1360/csb2011-56-30-2446LOU C H, ZHANG S Q. Transfer of assimilates during growth and development of higher plants [J]. Chinese Science Bulletin, 2011, 56(30): 2446−2460.(in Chinese) doi: 10.1360/csb2011-56-30-2446 [18] MA J F. Role of organic acids in detoxification of aluminum in higher plants [J]. Plant and Cell Physiology, 2000, 41(4): 383−390. doi: 10.1093/pcp/41.4.383 [19] 马士成. 铝对茶树氟吸收、累积、分布特性的影响及其机理研究[D]. 杭州: 浙江大学, 2012.MA S C. Effects of aluminum on uptake, distribution and accumulation of fluorine in tea plants and its mechanism[D]. Hangzhou: Zhejiang University, 2012. (in Chinese). [20] 钱莲文, 李清彪, 孙境蔚, 等. 铝胁迫下常绿杨根系有机酸和氨基酸的分泌 [J]. 厦门大学学报(自然科学版), 2018, 57(2):221−227.QIAN L W, LI Q B, SUN J W, et al. Root secretion of organic acids and amino acids of evergreen poplar under aluminum stress [J]. Journal of Xiamen University (Natural Science Edition), 2018, 57(2): 221−227.(in Chinese) [21] 李东芹. 铝通过有机酸途径缓解氟对茶树的影响[D]. 南京: 南京农业大学, 2017.LI D Q. Research on aluminum relieves the effect of fluorine by organic acid in tea plant[Camellia sinensis(L.) kuntze][D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese). [22] 田聪, 张烁, 粟畅, 等. 铝胁迫下大豆根系有机酸积累的特性 [J]. 大豆科学, 2017, 36(2):256−261.TIAN C, ZHANG S, SU C, et al. Effects of aluminum (Al) on organic acid accumulation in soybean roots [J]. Soybean Science, 2017, 36(2): 256−261.(in Chinese)