• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粘质沙雷氏菌FZSF02中转录调控因子OmpR的生物学功能

贾宪波 刘方晨 赵恪 林俊杰 方宇 陈济琛

贾宪波,刘方晨,赵恪,等. 粘质沙雷氏菌FZSF02中转录调控因子OmpR的生物学功能 [J]. 福建农业学报,2021,36(12):1491−1498 doi: 10.19303/j.issn.1008-0384.2021.12.014
引用本文: 贾宪波,刘方晨,赵恪,等. 粘质沙雷氏菌FZSF02中转录调控因子OmpR的生物学功能 [J]. 福建农业学报,2021,36(12):1491−1498 doi: 10.19303/j.issn.1008-0384.2021.12.014
JIA X B, LIU F C, ZHAO K, et al. Biological Functions of Transcription Factor OmpR in Serratia marcescens FZSF02 [J]. Fujian Journal of Agricultural Sciences,2021,36(12):1491−1498 doi: 10.19303/j.issn.1008-0384.2021.12.014
Citation: JIA X B, LIU F C, ZHAO K, et al. Biological Functions of Transcription Factor OmpR in Serratia marcescens FZSF02 [J]. Fujian Journal of Agricultural Sciences,2021,36(12):1491−1498 doi: 10.19303/j.issn.1008-0384.2021.12.014

粘质沙雷氏菌FZSF02中转录调控因子OmpR的生物学功能

doi: 10.19303/j.issn.1008-0384.2021.12.014
基金项目: 国家自然科学基金青年基金项目(31800068);福建省农业科学院科技创新团队建设项目(CXTD2021002-3)
详细信息
    作者简介:

    贾宪波(1986−),男,博士,助理研究员,研究方向:环境微生物(E-mail:xbj2011@163.com

    通讯作者:

    陈济琛(1964−),男,研究员,研究方向:农业微生物(E-mail:chenjichen2001@163.com

  • 中图分类号: Q 939

Biological Functions of Transcription Factor OmpR in Serratia marcescens FZSF02

  • 摘要:   目的  探索EnvZ/OmpR双组分调控系统的效应蛋白OmpR对粘质沙雷氏菌FZSF02灵菌红素合成及其他生物学特性的影响。  方法  同源重组法构建ompR敲除菌株,琼脂平板产色试验和qPCR检测OmpR对菌株灵菌红素合成的影响,结晶紫染色法和琼脂平板法等研究基因敲除菌株生物被膜形成能力,运动性和对不同环境胁迫因素的耐受性。  结果  序列分析显示OmpR为序列高度保守的蛋白。PCR验证证明ompR基因敲除成功;与野生型菌株相比∆ompR失去灵菌红素合成能力,qPCR试验显示灵菌红素合成基因簇中3个关键基因pigApigFpigN转录水平分别降低为野生型菌株的3.8%,2.0%和2.1%;∆ompR菌株生物被膜生成能力较野生型降低37.5%(37 ℃)和15.1%(27 ℃);OmpR对该菌的生长能力、运动能力和响应环境胁迫的能力无明显影响。  结论  ompR为一新报道的特异性调控粘质沙雷氏菌灵菌红素合成的基因,且该基因对该菌生物被膜的形成有重要影响。
  • 图  1  粘质沙雷氏菌FZSF02菌株OmpR基于氨基酸序列的系统发育分析

    注:括号中是对应物种蛋白在GenBank中的序列编号

    Figure  1.  Phylogenetic analysis on OmpR from S. marcescens FZSF02 with its homologous proteins

    Note:Numbers in brackets are GenBank sequence accession for respective proteins.

    图  2  粘质沙雷氏菌FZSF02菌株ompR基因敲除验证

    注:应用引物OmpRFF和OmpRBR进行PCR。泳道M:DNA分子量标准;泳道1:FZSF02野生型;泳道2:ompR基因Tn5转座子插入突变体FZSF02 ompR:: Tn5;泳道3:ompR基因被敲除120 bp的菌株FZSF02ΔompR。

    Figure  2.  Agarose gel electrophoresis identification of ompR-knockout S. marcescens FZSF02

    Note:PCR were carried out with primers OmpRFF and OmpRBR. Lane M: DNA marker; Lane 1: wild type FZSF02; Lane 2: FZSF02 ompR:: Tn5 with ompR inserted by Tn5 transposon; Lane 3: FZSF02ΔompR with 120 bp ompR-knockout.

    图  3  FZSF02野生菌株与ompR敲除菌株FZSF02ΔompR的生长曲线

    注:A:野生型菌株WT和基因敲除菌株FZSF02ΔompR在27 ℃条件的生长曲线。B:野生型菌株WT和基因敲除菌株FZSF02ΔompR在37 ℃条件的生长曲线。

    Figure  3.  Growth curves of WT and ΔompR of FZSF02

    Note:A: Growth curves of WT and FZSF02ΔompR at 27 ℃. B: Growth curves of WT and FZSF02ΔompR at 37 ℃.

    图  4  OmpR对Serratia marcescens FZSF02产灵菌红素能力及灵菌红素合成基因表达的影响

    注:A:野生型菌株FZSF02, ompR 转座子突变菌株和ompR敲除菌株在LB琼脂平板上的生长情况。FZSF02, FZSF02 ompR:: Tn5 and FZSF02ΔompR分别代表野生型菌株,Tn5插入突变菌株和ompR敲除菌株。B:ompR基因敲除对零菌红素合成基因的影响。pigA, pigFpigN为零菌红素合成基因簇上的3个基因。Log2倍数变化值代表上述三个基因在基因敲除菌株FZSF02ΔompR中相对野生型菌株的表达量变化。

    Figure  4.  Effects of OmpR on prodigiosin-producing ability and expressions of prodigiosin biosynthesis genes of S. marcescens FZSF02

    Note:A: Prodigiosin-producing abilities of FZSF02, ompR mutant strain, and ompR-knockout strain on LB agar at 27 ℃. FZSF02, FZSF02 ompR:: Tn5, and FZSF02ΔompR were WT strain, Tn5 transposon insertion strain, and ompR-knockout strain, respectively. B: Deletion of ompR on expression of prodigiosin biosynthesis genes. pigA, pigF, and pigN were 3 genes in prodigiosin biosynthesis gene cluster. Log 2-fold change values represent expression levels of these genes in FZSF02ΔompR as compared to WT FZSF02.

    图  5  OmpR对Serratia marcescens FZSF02生物膜合成能力的影响

    注:27 ℃和37 ℃液体培养条件下野生型菌株WT和基因敲除菌株ΔompR的产生物被膜能力检测。

    Figure  5.  Effect of OmpR on biofilm-producing ability of S. marcescens FZSF02

    Note:Biofilm-producing ability of WT andΔompR were assayed after incubation in liquid LB at 27 ℃ and 37 ℃ for 36 h.

    图  6  Serratia marcescens FZSF02和FZSF02ΔompR的运动能力

    注:在0.3%(w/v)和0.7%(w/v)琼脂的LB固体平板上检测Serratia marcescens FZSF02和基因敲除菌株FZSF02ΔompR运动的菌落直径。

    Figure  6.  Mobility of S. marcescens FZSF02 and FZSF02ΔompR

    Note:Mobility diameters of S. marcescens FZSF02 and FZSF02ΔompR were assayed on solid LB plates containing 0.3% (w/v) and 0.7% (w/v) agar, respectively.

    图  7  Serratia marcescens FZSF02和FZSF02ΔompR的产酶能力

    注:WT和ΔompR分别代表Serratia marcescens FZSF02野生型菌株和ompR敲除菌株。A:在含1% (w/v)脱脂奶粉的LB固体琼脂培养基上的蛋白酶产生能力。B:在含1%(v/v) tween 80的固体琼脂培养基上的脂肪酶产生能力。C和D:在血琼脂培养基上27 ℃条件下培养24小时和7天观察溶血素产生能力。

    Figure  7.  Enzyme-producing abilities of S. marcescens FZSF02 and FZSF02ΔompR

    Note:WT andΔompR represent WT and ompR-knockout S. marcescens FZSF02, respectively. A: Protease-producing ability on LB agar plates containing 1% (w/v) of skim milk. B: Lipase-producing ability on LB agar plates containing 1% (v/v) of tween 80. C and D: Hemolysin-producing abilities on blood agar base medium after incubation at 27 ℃ for 24 h (C) and 7 days (D), respectively.

    表  1  供试引物

    Table  1.   Primers used in this study

    引物 Primer序列 Sequence(5′-3′)
    OmpRFF ATGCAAGAGAATCATAAGATCCTG
    OmpRFR CATCGATGATGGTTGAGAGTCGGCGCCGATTTCCAGCCCCA
    OmpRBF CTCGATGAGTTTTTCTAAGGCAAATTCAAACTGAACCTCGGC
    OmpRBR TCATGCCTTGCTGCCGTCCGGTAC
    KanF TCTCAACCATCATCGATGAATTGT
    KanR TTAGAAAAACTCATCGAGCATCAA
    pigAF CGCCATCTTCCACGATTCAA
    pigAR CATTAGCCGACACTGTTCCA
    pigFF CACGGTATTCGGCGATGAC
    pigFR CACGGTGTTGCGAGAAGT
    pigNF CGGTTACCCTGGTCTATTG
    pigNR TGTCAGCACGATGTTCAT
    16SF CGTTACTCGCAGAAGAAGCA
    16SR TCACCGCTACACCTGGAA
    下载: 导出CSV

    表  2  胁迫条件下WT与∆ompR的存活率

    Table  2.   Survival rates of WT and ∆ompR under stress                  (单位:%)

    胁迫条件
    Stress factor
    WT 存活率
    Survival rate of WT
    ompR 存活率
    Survival rate of ∆ompR
    pH=3 22.72±3.40 a 28.35±4.10 a
    55 ℃ 0.15±0.01 a 0.11±0.05 a
    2 mol·L−1 NaCl 92.45±2.60 a 90.65±3.80 a
    0.22 mol·L−1 H2O2 22.40±1.30 a 23.84±1.10 a
    下载: 导出CSV
  • [1] MA H Y, YANG B, WANG H W, et al. Application of Serratia marcescens RZ-21 significantly enhances peanut yield and remediates continuously cropped peanut soil [J]. Journal of the Science of Food and Agriculture, 2016, 96(1): 245−253. doi: 10.1002/jsfa.7087
    [2] MAHLEN S D. Serratia infections: from military experiments to current practice [J]. Clinical Microbiology Reviews, 2011, 24(4): 755−91. doi: 10.1128/CMR.00017-11
    [3] WILLIAMSON N R, FINERAN P C, LEEPER F J, et al. The biosynthesis and regulation of bacterial prodiginines [J]. Nature Reviews Microbiology, 2006, 4(12): 887−99. doi: 10.1038/nrmicro1531
    [4] GERC A J, SONG L, CHALLIS G L, et al. The insect pathogen Serratia marcescens Db10 uses a hybrid non-ribosomal peptide synthetase-polyketide synthase to produce the antibiotic althiomycin [J]. Plos One, 2012, 7(9): e44673. doi: 10.1371/journal.pone.0044673
    [5] ARAUJO H W C, ANDRADE R F S, MONTERO R D, et al. Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications [J]. Microbial Cell Factories, 2019, 18(1).
    [6] YAN Q, FONG S S. Design and modularized optimization of one-step production of N-acetylneuraminic acid from chitin in Serratia marcescens [J]. Biotechnology & Bioengineering, 2018, 115(9): 2255−2267.
    [7] BAI F M, DAI L, FAN J Y, et al. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R, 3R)-2, 3-butanediol production [J]. Journal of Industrial Microbiology & Biotechnology, 2015, 42(5): 779−786.
    [8] LV X, DAI L, BAI F M, et al. Metabolic engineering of Serratia marcescens MG1 for enhanced production of (3R)-acetoin [J]. Bioresources & Bioprocessing, 2016, 3(1): 52.
    [9] SUN Y, WANG L J, PAN X W, et al. Improved prodigiosin production by relieving CpxR temperature-sensitive inhibition [J]. Frontiers in Bioengineering and Biotechnology, 2020(8): 344.
    [10] 尤忠毓, 王玉洁, 孙诗清, 等. 微生物发酵法生产灵菌红素研究进展 [J]. 生物工程学报, 2016, 32(10):1332−1347.

    YOU Z Y, WANG Y J, SUN S Q, et al. Progress in microbial production of prodigiosin [J]. Sheng Wu Gong Cheng Xue Bao, 2016, 32(10): 1332−1347.(in Chinese)
    [11] PRUB B M. Involvement of two-component signaling on bacterial motility and biofilm development [J]. Journal of Bacteriology, 2011, 199(18): 00259−17.
    [12] 王栋, 王少辉, 张焕容, 等. 双组分系统rcsC基因影响禽致病性大肠杆菌的致病性及相关生物学特性 [J]. 微生物学报, 2019, 59(3):468−477.

    WANG D, WANG S H, ZHANG H R, et al. Two-component system rcsC gene affects pathogenicity and associated biological characteristics of avian pathogenic Escherichia coli [J]. Acta Microbiologica Sinica, 2019, 59(3): 468−477.(in Chinese)
    [13] PETER C. FINERAN, HHLLY S, et al. Biosynthesis of tripyrrole and β‐lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production [J]. Molecular microbiology, 2005, 56(6): 1495−1517. doi: 10.1111/j.1365-2958.2005.04660.x
    [14] TZMZIN G, PETER C F, LEE E, et al. The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate [J]. BMC microbiology, 2009, 9(1): 112. doi: 10.1186/1471-2180-9-112
    [15] NICHOLAS A S, RONI M L, KIMBERLY M B, et al. Serratia marcescens cyclic AMP receptor protein controls transcription of EepR, a novel regulator of antimicrobial secondary metabolites [J]. Journal of Bacteriology, 2015, 197(15): 2468−2478. doi: 10.1128/JB.00136-15
    [16] HOMG Y T, CHANG K C, LIU Y N, et al. The RssB/RssA two-component system regulates biosynthesis of the tripyrrole antibiotic, prodigiosin, in Serratia marcescens [J]. International Journal of Medical Microbiology, 2010, 300(5): 304−312. doi: 10.1016/j.ijmm.2010.01.003
    [17] LIN C Q, JIA X B, FANG Y, et al. Enhanced production of prodigiosin by Serratia marcescens FZSF02 in the form of pigment pellets [J]. Electronic Journal of Biotechnology, 2019, 40: 58−64. doi: 10.1016/j.ejbt.2019.04.007
    [18] LIU Y G, CHEN Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences [J]. Biotechniques, 2007, 43(5): 649−654. doi: 10.2144/000112601
    [19] JIA X B, LIN X J, CHEN J C. Linear and exponential TAIL-PCR: a method for efficient and quick amplification of flanking sequences adjacent to Tn5 transposon insertion sites [J]. AMB Express, 2017, 7(1): 195. doi: 10.1186/s13568-017-0495-x
    [20] BRZOSTEK K, RACZKOWSKA A, ZASADA A. The osmotic regulator OmpR is involved in the response of Yersinia enterocolitica O: 9 to environmental stresses and survival within macrophages [J]. FEMS Microbiology Letters, 2010, 2: 265−271.
    [21] GAN H, ZHANG Y Q, HAN Y P, et al. Phenotypic and transcriptional analysis of the osmotic regulator OmpR in Yersinia pestis [J]. BMC Microbiology, 2011, 11(1): 39. doi: 10.1186/1471-2180-11-39
    [22] PAN X W, TANG M, YOU J J, et al. Regulator RcsB controls prodigiosin synthesis and various cellular processes in Serratia marcescens JNB5-1 [J]. Applied and Environmental Microbiology, 2021, 87(2): e02052−20.
    [23] NABIL M W, GEORGE P C S. The stationary phase sigma factor, RpoS, regulates the production of a carbapenem antibiotic, a bioactive prodigiosin and virulence in the enterobacterial pathogen Serratia sp. ATCC 39006 [J]. Microbiology, 2012, 158(3): 648−658. doi: 10.1099/mic.0.055780-0
    [24] VIDAL O, LONGIN R, PRIGENT C C, et al. Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression [J]. Journal of Bacteriology, 1998, 180(9): 2442−2449. doi: 10.1128/JB.180.9.2442-2449.1998
    [25] PRUSS B, BESEMANN C, DENTON A, et al. A complex transcription network controls the early stages of biofilm development by Escherichia coli [J]. Journal of Bacteriology, 2006, 188: 3731−3739. doi: 10.1128/JB.01780-05
    [26] MENG J, BAI J Q, XU J H, et al. Differential regulation of physiological activities by RcsB and OmpR in Yersinia enterocolitica [J]. FEMS Microbiology Letters, 2019, 366(17): 1−9.
    [27] 董洪燕, 彭大新, 焦新安, 等. 肠炎沙门氏菌鸡源株ompR基因缺失株的构建及生物学特性与亲本株的比较 [J]. 微生物学报, 2011, 51(9):1256−1262.

    DONG H Y, PENG D X, JIAO X A, et al. Construction and characterization of an ompR gene deletion mutant fromSalmonella enteritidis [J]. Acta Microbiologica Sinica, 2011, 51(9): 1256−1262.(in Chinese)
    [28] TIPTON K A, RATHER P N. An ompR-envZ Two-component system ortholog regulates phase variation, osmotic tolerance, motility, and virulence in Acinetobacter baumannii strain AB5075 [J]. Journal of Bacteriology, 2016, 199(3): 705−716.
    [29] PARK D, FORST S. Co-regulation of motility, exoenzyme and antibiotic production by the EnvZ-OmpR-FlhDC-FliA pathway in Xenorhabdus nematophila [J]. Molecular Microbiology, 2010, 61(6): 1397−1412.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  623
  • HTML全文浏览量:  293
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 修回日期:  2021-11-12
  • 网络出版日期:  2021-12-30
  • 刊出日期:  2021-12-28

目录

    /

    返回文章
    返回