Effect of Temperature Lowering Rate on Physiological Response of Oplegnathus punctatus in Live Fish Chill Preservation
-
摘要:
目的 研究冷驯化降温速率对斑石鲷生理应激的影响,缓解无水保活运输中斑石鲷(Oplegnathus punctatus)的应激反应。 方法 按照1、3、5 ℃·h−1的降温速率将斑石鲷从17.5~18.5 ℃降温至临界温度10 ℃致其休眠,并在该温度下进行无水保活,分别在0 h、2 h、4 h和6 h采样检测斑石鲷相关生理指标的变化情况。 结果 3 ℃·h−1降温处理组无水保活6 h后斑石鲷存活率最高,为76.7%。同时,随着无水保活时间的推移,各个降温处理组鱼的皮质醇(Cortisol)、谷草转氨酶(AST)、谷丙转氨酶(ALT)、丙二醛(MDA)、血糖(GLU)和乳酸(LAC)含量较降温前均显著升高(P<0.05),而肾上腺素(EPI)、肝糖原(Liver glycogen)、肌糖原(Muscle glycogen)含量较降温前均显著降低(P<0.05);特别是当无水保活时间为6 h,处理组斑石鲷血清各指标较降温前差异最为显著(P<0.05),其中,1 ℃·h−1降温处理组鱼的血清EPI、皮质醇以及肝脏ALT、肝脏肝糖原含量均显著高于3、5 ℃·h−1降温处理组(P<0.05),表明1 ℃·h−1降温速率使斑石鲷产生了更加强烈的应激反应;5 ℃·h−1降温处理组试验鱼血清AST、MDA、LAC含量较1、3 ℃·h−1降温处理组显著升高(P<0.05);而3 ℃·h−1降温处理组鱼血清EPI、AST、ALT、MDA、LAC和肝脏肝糖原含量则显著低于1、5 ℃·h−1降温处理组(P<0.05),表明3 ℃·h−1降温速率使斑石鲷产生的应激程度最小,肝损伤程度最低。 结论 以3 ℃·h−1降温速率冷驯化后无水保活6 h,斑石鲷产生的应激反应最低,建议将其冷驯化过程中的降温速率设为3 ℃·h−1。 Abstract:Objective Physiological response of Oplegnathus punctatus to the rate of temperature lowering was studied to optimize the live fish chill preservation technology for water-conservation transportation. Method Live and healthy O. punctatus were chilled at a rate of 1, 3, or 5 ℃·h−1 from 17.5–18.5 ℃ to the critical dormancy temperature of 10 ℃. Kept the fish out of water, in intervals of 0, 2, 4, and 6 h, sampling for the determination of various physiological indicators was conducted for a data analysis. Result The highest survival rate of O. punctatus in 6 h after the treatments was 76.7% with a chilling rate of 3 ℃·h−1. Under the chilling and low-temp preservation, the contents of cortisol, AST, ALT, MDA, GLU, and LAC in the fish of all treatment groups increased significantly (P<0.05), while those of EPI, hepatic glycogen, and muscle glycogen significantly declined (P<0.05). The serum indices of the fish chilled at all 3 rates for 6 h at 10 ℃ changed significantly (P<0.05). The contents of EPI, cortisol, liver ALT, and hepatic glycogen were significantly higher under the 1 ℃·h−1 than the 3 ℃·h−1 or 5 ℃·h−1 treatment (P<0.05) indicating a stronger stress response of the fish by the temperature lowering rate at 1 ℃·h−1 than the other two; while AST, MDA, and LAC were significantly higher under the 5 ℃·h−1 than the 1 ℃·h−1 or 3 ℃·h−1 treatment (P<0.05) and EPI, AST, ALT, MDA, LAC, and hepatic glycogen significantly lower under the 3 ℃·h−1 than the 1 ℃·h−1 or 5 ℃·h−1 treatment (P<0.05) showing the 3 ℃·h−1 rate of chilling minimized the effect of cold stress and lessen the liver injury on O. punctatus in the preservation process. Conclusion It appeared that a temperature lowering rate, such as 3 ℃·h−1, could be a tolerable threshold for the fish to make adequate acclimation to recover from physiological ill-effects with a high survival rate out of water at 10 ℃ for 6 h. -
表 1 不同降温速率下斑石鲷保活不同时间的存活率
Table 1. Survival rates of O. punctatus chilled at various temperature lowering rates out-of-water for different durations
降温速率
Temperature lowering rate/(℃·h−1)存活率 Survival rate/% 0 h 2 h 4 h 6 h 1 100.0 100.0 83.3 60.0 3 100.0 100.0 93.3 76.7 5 100.0 90.0 76.7 46.7 表 2 不同降温速率对斑石鲷无水保活中血清肾上腺素和皮质醇质量浓度的影响
Table 2. Effects of chilling rate on serum epinephrine and cortisol contents in survived O. punctatus under treatments
指标
Index组别
Group0 h 2 h 4 h 6 h 肾上腺素 Epinephrine/(ng·mL−1) 1 ℃·h−1 55.96±2.85 c 139.45±4.55 a 283.68±15.8 a 122.82±4.58 a 3 ℃·h−1 102.58±8.34 b 60.74±3.29 c 57.45±10.01 b 50.99±9.69 b 5 ℃·h−1 137.23±4.01 a 94.83±2.28 b 80.23±4.53 b 59.96±5.23 b 皮质醇 Cortisol/(ng·mL−1) 1 ℃·h−1 65.67±3.66 b 84.84±4.60 b 90.17±5.41 a 95.44±4.62 a 3 ℃·h−1 60.12±4.44 c 82.92±8.08 b 87.1±3.02 a 82.23±5.39 ab 5 ℃·h−1 92.1±5.17 a 95.59±5.83 a 73.79±6.08 b 65.89±4.85 b 注:同列数据后不同小写字母表示处理间差异显著(P<0.05),相同小写字母者表示无显著差异(P>0.05),下同。
Note:Different lowercase letters in the same sampling time indicated significant difference in the experimental groups(P<0.05), the same lowercase letters indicated no significant difference in this index between the experimental groups(P>0.05). The same below.表 3 不同降温速率对斑石鲷无水保活中血清谷草转氨酶、谷丙转氨酶和丙二醛活力的影响
Table 3. Effects of chilling rate on serum AST, ALT, and MDA activities in survived O. punctatus under treatments
指标
Index组别
Group0 h 2 h 4 h 6 h 谷草转氨酶 AST/(U·L−1) 1 ℃·h−1 151.24±5.32 b 202.05±7.23 b 243.53±7.14 a 279.45±5.82 b 3 ℃·h−1 142.82±4.16 b 174.23±6.45 c 225.19±5.63 b 229.37±4.35 c 5 ℃·h−1 174.03±3.68 a 239.83±7.56 a 252.43±9.17 a 304.98±9.16 a 谷丙转氨酶 ALT/(U·L−1) 1 ℃·h−1 30.91±2.14 a 45.36±3.21 a 54.28±4.33 a 70.04±4.65 a 3 ℃·h−1 26.82±3.23 b 33.72±3.82 c 42.04±2.37 b 47.59±3.54 c 5 ℃·h−1 24.89±2.65 b 39.89±4.12 b 51.83±1.29 a 62.27±5.23 b 丙二醛 MDA/(U·L−1) 1 ℃·h−1 2.19±0.18 b 2.86±0.10 b 4.74±0.23 c 7.34±0.35 b 3 ℃·h−1 1.68±0.15 c 2.37±0.04 c 5.23±0.23 b 6.47±0.17 c 5 ℃·h−1 3.70±0.17 a 4.65±0.15 a 6.52±0.35 a 7.87±0.31 a 表 4 不同降温速率对斑石鲷无水保活中血糖、肝糖原、肌糖原和乳酸含量的影响
Table 4. Effects of chilling rate on GLU, hepatic glycogen, muscle glycogen, and LAC contents in survived O. punctatus under treatments
指标
Index组别
Group0 h 2 h 4 h 6 h 血糖 GLU/(mmol·L−1) 1 ℃·h−1 8.16±0.18 c 13.15±0.28 c 23.67±0.43 b 21.88±0.40 b 3 ℃·h−1 11.36±0.44 b 21.04±0.15 a 26.85±0.32 a 29.86±0.21 a 5 ℃·h−1 12.77±0.06 a 19.86±0.31 b 26.35±0.53 a 16.05±0.19 c 肝糖原 Hepatic Glycogen/(mg·g−1) 1 ℃·h−1 9.83±0.45 a 8.19±1.65 a 5.25±1.14 a 6.88±0.40 a 3 ℃·h−1 8.65±1.30 b 7.78±0.39 a 4.53±0.32 b 2.69±0.43 c 5 ℃·h−1 6.82±0.28 c 5.21±0.12 b 3.75±0.11 c 4.64±0.12 b 肌糖原 Muscle glycogen/(mg·g−1) 1 ℃·h−1 1.31±0.16 a 1.18±0.11 a 0.93±0.10 a 0.62±0.13 a 3 ℃·h−1 1.18±0.07 b 1.12±0.15 b 0.85±0.04 c 0.65±0.08 a 5 ℃·h−1 1.09±0.05 c 1.07±0.01 c 0.84±0.04 c 0.58±0.03 b 乳酸 LAC/(mmol·L−1) 1 ℃·h−1 6.14±0.03 c 5.72±0.14 c 8.97±0.12 b 10.28±0.16 b 3 ℃·h−1 6.61±0.18 b 5.86±0.21 b 8.62±0.23 b 9.97±0.22 c 5 ℃·h−1 6.93±0.13 a 6.32±0.16 a 9.93±0.27 a 11.31±0.28 a -
[1] 钟鸿干, 马军, 姜芳燕, 等. 2种养殖模式下斑石鲷肌肉营养成分及品质的比较 [J]. 江苏农业科学, 2017, 45(1):155−158.ZHONG H G, MA J, JIANG F Y, et al. Comparison of muscle nutritional components and quality of Oplegnathus punctatus under two culture modes [J]. Jiangsu Agricultural Sciences, 2017, 45(1): 155−158.(in Chinese) [2] 高波, 孙瑞健, 冯卫, 等. 江苏地区斑石鲷池塘养殖试验 [J]. 科学养鱼, 2020(5):65. doi: 10.3969/j.issn.1004-843X.2020.05.032GAO B, SUN R J, FENG W, et al. Experiment on pond culture of Porphyridae in Jiangsu province [J]. Scientific Fish Farming, 2020(5): 65.(in Chinese) doi: 10.3969/j.issn.1004-843X.2020.05.032 [3] 陈晗, 吴嘉鑫, 徐德峰, 等. 南美白对虾无水保活双重环境胁迫下的存活变化规律及机理 [J]. 食品科学, 2021, 11(4):1−9. doi: 10.7506/spkx1002-6630-20191010-075CHEN H, WU J X, XU D F, et al. Preliminary exploration for the mortality mechanism of shrimp L. vannamei under combined stress during waterless live transport [J]. Food Science, 2021, 11(4): 1−9.(in Chinese) doi: 10.7506/spkx1002-6630-20191010-075 [4] 张玉晗, 谢晶. 低温休眠预处理对花鲈无水保活效果的影响 [J]. 食品科学, 2018, 39(23):221−226. doi: 10.7506/spkx1002-6630-201823033ZHANG Y H, XIE J. Effect of precooling treatment on survival of Lateolabrax maculatus during live transportation without using water [J]. Food Science, 2018, 39(23): 221−226.(in Chinese) doi: 10.7506/spkx1002-6630-201823033 [5] SAMPAIO F D F, FREIRE C A. An overview of stress physiology of fish transport: Changes in water quality as a function of transport duration [J]. Fish and Fisheries, 2016, 17(4): 1055−1072. doi: 10.1111/faf.12158 [6] 曹杰, 王琪, 梅俊, 等. 有水与无水保活运输对大菱鲆生理应激及鱼肉品质的影响 [J]. 水产学报, 2021, 45(7):1034−1042.CAO J, WANG Q, MEI J, et al. Effects of transport in water and waterless transport on physiological stress and flesh quality of turbot(Scophthalmus maximus) [J]. Journal of Fisheries of China, 2021, 45(7): 1034−1042.(in Chinese) [7] 刘佳, 卢玉婷, 王楠, 等. 饲料中添加维生素C对鱼类生长、免疫及抗应激能力影响的研究进展 [J]. 水产科技情报, 2020, 47(5):289−291,300.LIU J, LU Y T, WANG N, et al. Effects of dietary vitamin C on growth, immunity and antistress capability of fish: A review [J]. Fisheries Science & Technology Information, 2020, 47(5): 289−291,300.(in Chinese) [8] 刘峰, 王舒淇, 朱绍彰, 等. 鱼类保活运输及其对肌肉和血液生理生化指标影响研究进展 [J]. 食品安全质量检测学报, 2021, 12(16):6310−6316.LIU F, WANG S Q, ZHU S Z, et al. Research progress on the live transportation of fish and its effect on muscle and physiological and biochemical indexes of blood [J]. Journal of Food Safety & Quality, 2021, 12(16): 6310−6316.(in Chinese) [9] 聂小宝, 张玉晗, 孙小迪, 等. 活鱼运输的关键技术及其工艺方法 [J]. 渔业现代化, 2014, 41(4):34−39. doi: 10.3969/j.issn.1007-9580.2014.04.008NIE X B, ZHANG Y H, SUN X D, et al. Process and key technologies of transportation of live fish [J]. Fishery Modernization, 2014, 41(4): 34−39.(in Chinese) doi: 10.3969/j.issn.1007-9580.2014.04.008 [10] 张长峰, 聂小宝, 王国利. 水产品无水保活方法[P]. 中国: CN 1669413A. 2014-04-30. [11] 王彩霞, 白婵, 李宁, 等. 不同降温速率休眠的加州鲈无水保活品质比较 [J]. 现代食品科技, 2020, 36(5):129−137,41.WANG C X, BAI C, LI N, et al. Comparison of dormancy at different cooling rates on the survival of Micropterus salmoides without water [J]. Modern Food Science and Technology, 2020, 36(5): 129−137,41.(in Chinese) [12] 李卢, 张长峰, 吴佳静, 等. 高压对鲫鱼无水保活的影响 [J]. 食品工业科技, 2020, 41(20):261−265.LI L, ZHANG C F, WU J J, et al. Effect of high pressure on the water-free survival of crucian carp [J]. Science and Technology of Food Industry, 2020, 41(20): 261−265.(in Chinese) [13] 彭程. 全身麻醉复合硬膜外麻醉对肺癌患者术后应激因子肾上腺皮质免疫水平的影响 [J]. 数理医药学杂志, 2021, 34(11):1596−1598. doi: 10.3969/j.issn.1004-4337.2021.11.006PENG C. Effect of general anesthesia combined with epidural anesthesia on postoperative adrenal cortex immune levels of stress factors in patients with lung cancer [J]. Journal of Mathematical Medicine, 2021, 34(11): 1596−1598.(in Chinese) doi: 10.3969/j.issn.1004-4337.2021.11.006 [14] ZHANG Z H, ZHANG X M, LI Z L, et al. Effects of different levels of environmental enrichment on the sheltering behaviors, brain development and cortisol levels of black rockfish Sebastes schlegelii [J]. Applied Animal Behaviour Science, 2019, 218: 104825. doi: 10.1016/j.applanim.2019.06.006 [15] VENTURA A, KUSAKABE M, TAKEI Y. Salinity-dependent in vitro effects of homologous natriuretic peptides on the pituitary-interrenal axis in eels [J]. General and Comparative Endocrinology, 2011, 173(1): 129−138. doi: 10.1016/j.ygcen.2011.05.007 [16] 张宇婷, 杨建, 耿龙武, 等. NaHCO3碱度胁迫对大鳞鲃氧化应激水平的影响 [J]. 中国海洋大学学报(自然科学版), 2021, 51(11):32−39.ZHANG Y T, YANG J, GENG L W, et al. Effect of NaHCO3 alkalinity on oxidative stress of Luciobarbus capito [J]. Periodical of Ocean University of China, 2021, 51(11): 32−39.(in Chinese) [17] 孟振, 张鸿丽, 刘新富, 等. 急性热应激对大菱鲆血液生化指标的影响 [J]. 海洋科学, 2020, 44(1):122−131. doi: 10.11759/hykx20190814001MENG Z, ZHANG H L, LIU X F, et al. Effect of acute heat stress on plasma biochemical indexes in turbot Scophthalmus maximus [J]. Marine Sciences, 2020, 44(1): 122−131.(in Chinese) doi: 10.11759/hykx20190814001 [18] KORTE S M, OLIVIER B, KOOLHAAS J M. A new animal welfare concept based on allostasis [J]. Physiology & Behavior, 2007, 92(3): 422−428. [19] 席峰. 鱼类应激及其适应性生热作用 [J]. 饲料研究, 2001(10):10−12. doi: 10.3969/j.issn.1002-2813.2001.10.004XI F. Calorigenesis of stress and adaptability of fish [J]. Feed Research, 2001(10): 10−12.(in Chinese) doi: 10.3969/j.issn.1002-2813.2001.10.004 [20] 徐钢春, 杜富宽, 聂志娟, 等. 10‰盐度对长江刀鲚幼鱼装载和运输胁迫中应激指标的影响 [J]. 水生生物学报, 2015, 39(1):66−72. doi: 10.7541/2015.9XU G C, DU F K, NIE Z J, et al. Effects of 10‰ salinity to the plasma osmotic pressure, cortisol, glucose and liver glycogen in colilia nasus stressed during loading and transportation [J]. Acta Hydrobiologica Sinica, 2015, 39(1): 66−72.(in Chinese) doi: 10.7541/2015.9 [21] MAULE A G, TRIPP R A, KAATTARI S L, et al. Stress alters immune function and disease resistance in Chinook salmon (Oncorhynchus tshawytscha) [J]. Journal of Endocrinology, 1989, 120(1): 135−142. doi: 10.1677/joe.0.1200135 [22] 刘骁, 谢晶, 杨茜, 等. 无水保活条件下团头鲂生理应激及鱼肉品质的变化 [J]. 农业工程学报, 2016, 32(3):295−300.LIU X, XIE J, YANG X, et al. Change of physiological stress and flesh quality of Megalobrama amblycephala during suitable waterless keep alive conditions [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 295−300.(in Chinese) [23] CHEN G R, SUN L T, LEE Y H, et al. Characteristics of blood in common carp, Cyprinus carpio, exposed to low temperatures [J]. Journal of Applied Aquaculture, 1996, 5(3): 21−31. [24] PICKERING A D, POTTINGER T G. Stress responses and disease resistance in salmonid fish: Effects of chronic elevation of plasma cortisol [J]. Fish Physiology and Biochemistry, 1989, 7(1/2/3/4/5/6): 253−258. [25] 杜浩, 危起伟, 甘芳, 等. 美洲鲥应激后皮质醇激素和血液生化指标的变化 [J]. 动物学杂志, 2006, 41(3):80−84. doi: 10.3969/j.issn.0250-3263.2006.03.015DU H, WEI Q W, GAN F, et al. Changes in serum cortisol and blood biochemical parameters after stress in American shad [J]. Chinese Journal of Zoology, 2006, 41(3): 80−84.(in Chinese) doi: 10.3969/j.issn.0250-3263.2006.03.015 [26] 宋志明, 刘鉴毅, 庄平, 等. 低温胁迫对点篮子鱼幼鱼肝脏抗氧化酶活性及丙二醛含量的影响 [J]. 海洋渔业, 2015, 37(2):142−150. doi: 10.3969/j.issn.1004-2490.2015.02.007SONG Z M, LIU J Y, ZHUANG P, et al. Influence of low-temperature stress on the antioxidant enzymes activities and malondialdehyde contents in liver of juvenile Siganus guttatas [J]. Marine Fisheries, 2015, 37(2): 142−150.(in Chinese) doi: 10.3969/j.issn.1004-2490.2015.02.007 [27] 吴胜泽, 熊波, 黄钟标, 等. 无水保活下鲫鱼生理生化指标的变化 [J]. 食品安全质量检测学报, 2018, 9(15):3992−3998. doi: 10.3969/j.issn.2095-0381.2018.15.019WU S Z, XIONG B, HUANG Z B, et al. Changes of physiological and biochemical properties of Crucianauratus waterless keep-alive during the transportation [J]. Journal of Food Safety & Quality, 2018, 9(15): 3992−3998.(in Chinese) doi: 10.3969/j.issn.2095-0381.2018.15.019 [28] 何蓉, 谢晶, 苏辉, 等. 不同温度对无水保活条件下的中华鳖肌肉营养成分及血液生化指标影响 [J]. 食品科学, 2014, 35(6):194−199. doi: 10.7506/spkx1002-6630-201406042HE R, XIE J, SU H, et al. Effect of temperature on muscle nutritional components and blood biochemical parameters of Pelodiscus sinensis alive without water [J]. Food Science, 2014, 35(6): 194−199.(in Chinese) doi: 10.7506/spkx1002-6630-201406042 [29] 常玉梅, 匡友谊, 曹鼎臣, 等. 低温胁迫对鲤血液学和血清生化指标的影响 [J]. 水产学报, 2006, 30(5):701−706.CHANG Y M, KUANG Y Y, CAO D C, et al. Effects of cooling temperature stress on hematology and serum chemistry values ofCyprinus carpio [J]. Journal of Fisheries of China, 2006, 30(5): 701−706.(in Chinese) [30] 张宇雷, 管崇武. 船载摇摆胁迫对斑石鲷血液生化指标的影响研究 [J]. 中国农学通报, 2017, 33(29):145−149.ZHANG Y L, GUAN C W. Ship rocking affecting serum biochemical indexes of spotted knifejaw (Oplegnathus punctatus) [J]. Chinese Agricultural Science Bulletin, 2017, 33(29): 145−149.(in Chinese) [31] PANKHURST N W. The endocrinology of stress in fish: An environmental perspective [J]. General and Comparative Endocrinology, 2011, 170(2): 265−275. doi: 10.1016/j.ygcen.2010.07.017 [32] 邱春红, 丘春东. 血乳酸检测的临床应用研究 [J]. 检验医学, 2013, 28(4):337−341.QIU C H, QIU C D. Clinical application of blood lactate detection [J]. Laboratory Medicine, 2013, 28(4): 337−341.(in Chinese) [33] 范秀萍. 珍珠龙胆石斑鱼低温休眠无水保活的胁迫响应与机制研究[D]. 湛江: 广东海洋大学, 2019.FAN X P. Stress response and mechanism of waterless preservation after low-temperature induced dormancy on pearl Gentian grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatus)[D]. Zhanjiang: Guangdong Ocean University, 2019. (in Chinese) [34] 纪利芹, 蒋克勇, 韩龙江, 等. 连续降温对大菱鲆成鱼代谢机能的影响 [J]. 海洋科学, 2014, 38(5):46−53. doi: 10.11759/hykx20130617001JI L Q, JIANG K Y, HAN L J, et al. Effect of continuous cooling on metabolic function of adult Scophthalmus maximus L [J]. Marine Sciences, 2014, 38(5): 46−53.(in Chinese) doi: 10.11759/hykx20130617001 [35] 张丽. 大黄鱼保活运输及冰温保鲜的研究[D]. 上海: 上海海洋大学, 2011.ZHANG L. Study on technology of keeping alive and super-chilling preservation of Pseudosciaena crocea[D]. Shanghai: Shanghai Ocean University, 2011. (in Chinese) [36] NIE X B, LEI J L, CHEN S X, et al. Physiological, proteomic, and gene expression analysis of turbot (Scophthalmus maximus) in response to cold acclimation [J]. Aquaculture, 2018, 495: 281−287. doi: 10.1016/j.aquaculture.2018.05.054 [37] RAPOSO DE MAGALHÃES C, SCHRAMA D, FARINHA A P, et al. Protein changes as robust signatures of fish chronic stress: A proteomics approach to fish welfare research [J]. BMC Genomics, 2020, 21(1): 309. doi: 10.1186/s12864-020-6728-4 [38] 李宁, 白婵, 熊光权, 等. 无水保活时间对斑点叉尾鮰血液生化和肌肉品质的影响 [J]. 现代食品科技, 2018, 34(12):74−81, 11.LI N, BAI C, XIONG G Q, et al. Effects of waterless keep alive time on physiological and biochemical index of Ictalurus punctatus [J]. Modern Food Science and Technology, 2018, 34(12): 74−81, 11.(in Chinese) [39] VIRANI N A, REES B B. Oxygen consumption, blood lactate and inter-individual variation in the gulf killifish, Fundulus grandis, during hypoxia and recovery [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2000, 126(3): 397−405.