Biological Functions of Plant Endophytes and Role of microRNA in Interactions between Plants and Endophytes
-
摘要: 植物内生菌能够促进植物生长,提高植物的抗逆性。此外,应用植物内生菌还可修复环境污染,保护濒危物种。在内生菌-植物互作过程中,一些共生相关基因及microRNA发挥了重要作用。microRNA是重要的转录后调节因子,对植物的生长发育及抵御逆境具有重要的调控作用。本文针对植物内生菌的功能和植物microRNA对植物-内生菌互作的影响进行综述,建议除了关注内生菌对植物的影响,也要加强植物对内生菌影响的研究;加强非模式植物、微生物互作及多种内生菌与植物互作中microRNA的变化及功能研究;此外,也要加强新植物内生菌资源及植物内生菌新功能的挖掘。Abstract: Plant endophytes can promote plant growth and resistance to stress. They can be applied to repair damages caused by environmental pollution and protect endangered species. Certain symbiosis-related genes and microRNAs play an important role in the interactions between plants and endophytes. As a post-transcriptional regulator, microRNA associates with the regulation of plant growth and stress-resistance. This article reviews the functions of plant endophytes and the role of microRNAs plays in the plant-endophyte interactions. It is recommended future research efforts to focus not only on how and what endophytes affect plants but also the roles of plants on endophytes, as well as the non-model plants, microbial interactions, functions of microRNA in plant-endophyte interactions, and resource explorations.
-
Key words:
- Endophytes /
- biological function /
- microRNA /
- resistance /
- environmental remediation
-
[1] 陈龙, 梁子宁, 朱华. 植物内生菌研究进展 [J]. 生物技术通报, 2015, 31(8):30−34.CHEN L, LIANG Z N, ZHU H. Research advances in the studies of plant entophytic [J]. Biotechnology Bulletin, 2015, 31(8): 30−34.(in Chinese) [2] REDECKER D, KODNER R, GRAHAM L E. Glomalean fungi from the Ordovician [J]. Science, 2000, 289(5486): 1920−1921. doi: 10.1126/science.289.5486.1920 [3] 杨亚茹, 茆少星, 闫淑珍, 等. 两株植物内生菌促生和诱导辣椒植株对南方根结线虫抗性的比较分析 [J]. 南京师大学报(自然科学版), 2019, 42(4):77−84.YANG Y R, MAO S X, YAN S Z, et al. Comparative analysis of growth promotion and resistance induction of pepper plants to Meloidogyne incognita by two endophytes [J]. Journal of Nanjing Normal University (Natural Science Edition), 2019, 42(4): 77−84.(in Chinese) [4] 孔亚丽, 朱春权, 曹小闯, 等. 土壤微生物介导植物抗盐性机理的研究进展 [J]. 中国农业科学, 2021, 54(10):2073−2083. doi: 10.3864/j.issn.0578-1752.2021.10.004KONG Y L, ZHU C Q, CAO X C, et al. Research progress of soil microbial mechanisms in mediating plant salt resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073−2083.(in Chinese) doi: 10.3864/j.issn.0578-1752.2021.10.004 [5] 刘继霞, 山军建, 王平. 两种生防菌剂防治向日葵黄萎病的效果 [J]. 中国植保导刊, 2020, 40(12):80−81,75. doi: 10.3969/j.issn.1672-6820.2020.12.020LIU J X, SHAN J J, WANG P. Effects of two biocontrol agents on verticillium wilt of sunflower [J]. China Plant Protection, 2020, 40(12): 80−81,75.(in Chinese) doi: 10.3969/j.issn.1672-6820.2020.12.020 [6] 常恺莉, 张琳, 周红英, 等. 药用植物内生菌资源在农业中的应用与研究进展 [J]. 山东农业科学, 2021, 53(7):135−141.CHANG K L, ZHANG L, ZHOU H Y, et al. Application and research progress of endophyte resources of medicinal plants in agriculture [J]. Shandong Agricultural Sciences, 2021, 53(7): 135−141.(in Chinese) [7] 张国荣, 翟丽霞, 王燕萍, 等. 药用植物内生菌次级代谢产物药理作用研究进展 [J]. 中国药房, 2021, 32(7):880−884. doi: 10.6039/j.issn.1001-0408.2021.07.19ZHANG G R, ZHAI L X, WANG Y P, et al. Research progress on pharmacological effects of secondary metabolites of endophytes in medicinal plants [J]. China Pharmacy, 2021, 32(7): 880−884.(in Chinese) doi: 10.6039/j.issn.1001-0408.2021.07.19 [8] RYAN R P, GERMAINE K, FRANKS A, et al. Bacterial endophytes: Recent developments and applications [J]. FEMS Microbiology Letters, 2008, 278(1): 1−9. doi: 10.1111/j.1574-6968.2007.00918.x [9] ŠEČIĆ E, KOGEL K H, LADERA-CARMONA M J. Biotic stress-associated microRNA families in plants [J]. Journal of Plant Physiology, 2021, 263: 153451. doi: 10.1016/j.jplph.2021.153451 [10] JONES-RHOADES M W, BARTEL D P, BARTEL B. microRNAS and their regulatory roles in plants [J]. Annual Review of Plant Biology, 2006, 57: 19−53. doi: 10.1146/annurev.arplant.57.032905.105218 [11] 马欣, 成妍, 马蓉丽. 植物根围促生细菌促生机制研究进展 [J]. 山东农业科学, 2019, 51(5):148−154.MA X, CHENG Y, MA R L. Research progress of growth-promoting mechanisms of plant growth-promoting rhizobacteria [J]. Shandong Agricultural Sciences, 2019, 51(5): 148−154.(in Chinese) [12] 卢志红, 倪国荣, 陈龙, 等. 鸭跖草抗铜内生菌株的筛选及其促生性质研究 [J]. 江西农业大学学报, 2019, 41(6):1167−1174.LU Z H, NI G R, CHEN L, et al. Isolation and growth-promoting properties of anti-copper endophytes strains from Commelina communis [J]. Acta Agriculturae Universitatis Jiangxiensis, 2019, 41(6): 1167−1174.(in Chinese) [13] 赵晓妍, 曹越, 董芮萌, 等. 一株野生大豆内生细菌YDX14菌株的分离、鉴定及促生效应研究 [J]. 大豆科学, 2021, 40(2):224−231.ZHAO X Y, CAO Y, DONG R M, et al. Isolation, identification and growth promoting effect of an endophytic bacteria YDX14 in wild soybean [J]. Soybean Science, 2021, 40(2): 224−231.(in Chinese) [14] ISMAIL M A, AMIN M A, EID A M, et al. Comparative study between exogenously applied plant growth hormones versus metabolites of microbial endophytes as plant growth-promoting for Phaseolus vulgaris L. [J]. Cells, 2021, 10(5): 1059. doi: 10.3390/cells10051059 [15] CAI F, CHEN W, WEI Z, et al. Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to plant growth, nutrient availability and soil microflora [J]. Plant and Soil, 2015, 388(1/2): 337−350. [16] 马勤, 雷瑞峰, 迪力热巴·阿不都肉苏力, 等. 环境胁迫下内生菌与宿主代谢相互作用研究进展 [J]. 生物技术通报, 2021, 37(3):153−161.MA Q, LEI R F, DILIREBA A, et al. Research progress on the symbiotic metabolic of endophytes and plants under stress [J]. Biotechnology Bulletin, 2021, 37(3): 153−161.(in Chinese) [17] 冯君, 王宇楠, 于翠梅, 等. 植物内生菌对重金属胁迫下植物生长的影响综述 [J]. 江苏农业科学, 2019, 47(18):42−45.FENG J, WANG Y N, YU C M, et al. Effects of endophyte on growth of plants under heavy metal stress: A review [J]. Jiangsu Agricultural Sciences, 2019, 47(18): 42−45.(in Chinese) [18] FONTANA D C, DE PAULA S, TORRES A G, et al. Endophytic fungi: Biological control and induced resistance to phytopathogens and abiotic stresses [J]. Pathogens (Basel, Switzerland), 2021, 10(5): 570. [19] KÖHL J, KOLNAAR R, RAVENSBERG W J. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy [J]. Frontiers in Plant Science, 2019, 10: 845. doi: 10.3389/fpls.2019.00845 [20] CABONI P, AISSANI N, DEMURTAS M, et al. Nematicidal activity of acetophenones and chalcones against Meloidogyne incognita and structure-activity considerations [J]. Pest Management Science, 2016, 72(1): 125−130. doi: 10.1002/ps.3978 [21] KUMAR K K, DARA S K. Fungal and bacterial endophytes as microbial control agents for plant-parasitic Nematodes [J]. International Journal of Environmental Research and Public Health, 2021, 18(8): 4269. doi: 10.3390/ijerph18084269 [22] 张涵飞, 李雪兵, 周建如, 等. 接种球孢白僵菌提高烟草对蚜虫和白粉菌的抗性 [J]. 植物医生, 2018, 31(11):49−52.ZHANG H F, LI X B, ZHOU J R, et al. Inoculation of Beauveria bassiana to increase tobacco resistance to aphids and powdery mildew [J]. Plant Doctor, 2018, 31(11): 49−52.(in Chinese) [23] 蒙怡, 查锦宏, 朱蕴兰, 等. 球孢白僵菌定殖对牛蒡苗生长特性的影响 [J]. 安徽农业科学, 2021, 49(10):134−137. doi: 10.3969/j.issn.0517-6611.2021.10.036MENG Y, ZHA J H, ZHU W L, et al. Effect of colonization of Beauveria bassiana on growth characteristic of burduck seedling [J]. Journal of Anhui Agricultural Sciences, 2021, 49(10): 134−137.(in Chinese) doi: 10.3969/j.issn.0517-6611.2021.10.036 [24] WAQAS M, KHAN A L, KAMRAN M, et al. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress [J]. Molecules (Basel, Switzerland), 2012, 17(9): 10754−10773. doi: 10.3390/molecules170910754 [25] KHAN A L, HUSSAIN J, AL-HARRASI A, et al. Endophytic fungi: Resource for gibberellins and crop abiotic stress resistance [J]. Critical Reviews in Biotechnology, 2015, 35(1): 62−74. doi: 10.3109/07388551.2013.800018 [26] JIAO J, MA Y E, CHEN S, et al. Melatonin-producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts [J]. Frontiers in Plant Science, 2016, 7: 1387. [27] ZHANG Y, YU X X, ZHANG W J, et al. Interactions between endophytes and plants: Beneficial effect of endophytes to ameliorate biotic and abiotic stresses in plants [J]. Journal of Plant Biology, 2019, 62(1): 1−13. doi: 10.1007/s12374-018-0274-5 [28] ZHANG Y, LI C, JI X H, et al. The knowledge domain and emerging trends in phytoremediation: A scientometric analysis with CiteSpace [J]. Environmental Science and Pollution Research International, 2020, 27(13): 15515−15536. doi: 10.1007/s11356-020-07646-2 [29] WEYENS N, VAN DER LELIE D, TAGHAVI S, et al. Phytoremediation: plant-endophyte partnerships take the challenge [J]. Current Opinion in Biotechnology, 2009, 20(2): 248−254. doi: 10.1016/j.copbio.2009.02.012 [30] GERHARDT K E, HUANG X D, GLICK B R, et al. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges [J]. Plant Science, 2009, 176(1): 20−30. doi: 10.1016/j.plantsci.2008.09.014 [31] 丁怡, 孙园, 丁冉, 刘兴坡, 等. 人工湿地生态除污的研究进展: 机制、影响因素和强化方法[J/OL]. 工业水处理: 1-13[2022-01-24]. http://kns.cnki.net/kcms/detail/12.1087.TQ.20210716.1359.004.html.DING Y, SUN Y, DING R, et al. Research progress of constructed wetland in ecological purification of water body: mechanism, influencing factor and enhanced measure[J/OL]. Industrial Water Treatment, 1-13[2021-07-24]. http://kns.cnki.net/kcms/detail/12.1087.TQ.20210716.1359.004.html. [32] ASHRAF S, AFZAL M, REHMAN K, et al. Plant-endophyte synergism in constructed wetlands enhances the remediation of tannery effluent [J]. Water Science and Technology, 2018, 77(5/6): 1262−1270. [33] WIEWIÓRA B, ŻUREK G. The response of the associations of grass and epichloë endophytes to the increased content of heavy metals in the soil [J]. Plants, 2021, 10(3): 429. doi: 10.3390/plants10030429 [34] 吴春雅, 戴传超, 张凤敏, 等. 内生菌协同宿主植物修复土壤复合污染的研究进展 [J]. 微生物学杂志, 2018, 38(5):96−105. doi: 10.3969/j.issn.1005-7021.2018.05.016WU C Y, DAI C C, ZHANG F M, et al. Advances in soil remediation of complex pollution with endogenous microbes synergistically with host plant [J]. Journal of Microbiology, 2018, 38(5): 96−105.(in Chinese) doi: 10.3969/j.issn.1005-7021.2018.05.016 [35] FATIMA K, IMRAN A, AMIN I, et al. Successful phytoremediation of crude-oil contaminated soil at an oil exploration and production company by plants-bacterial synergism [J]. International Journal of Phytoremediation, 2018, 20(7): 675−681. doi: 10.1080/15226514.2017.1413331 [36] YE H T, LUO S Q, YANG Z N, et al. Endophytic fungi stimulate the concentration of medicinal secondary metabolites in Houttuynia cordata thunb [J]. Plant Signaling & Behavior, 2021, 16(9): 1929731. [37] BAJAJ R, AGARWAL A, RAJPAL K, et al. Co-cultivation of Curcuma longa with Piriformospora indica enhances the yield and active ingredients [J]. American Journal of Current Microbiology, 2014, 2(1): 6−17. [38] CHEN H M, QI Y, HE X Y, et al. Endophytic fungus Mucor circinelloides DF20 promote tanshinone biosynthesis and accumulation in Salvia miltiorrhiza root [J]. Plant Science, 2021, 307: 110898. doi: 10.1016/j.plantsci.2021.110898 [39] 李瑞雪, 赵卫国, 章玉萍, 等. 植物microRNA的研究进展 [J]. 蚕业科学, 2020, 46(2):239−247.LI R X, ZHAO W G, ZHANG Y P, et al. Research progress on microRNAs in plant [J]. Science of Sericulture, 2020, 46(2): 239−247.(in Chinese) [40] LONG S R. Rhizobium symbiosis: Nod factors in perspective [J]. The Plant Cell, 1996, 8(10): 1885−1898. [41] TIWARI M, PANDEY V, SINGH B, et al. Dynamics of miRNA mediated regulation of legume symbiosis [J]. Plant, Cell & Environment, 2021, 44(5): 1279−1291. [42] BOUALEM A, LAPORTE P, JOVANOVIC M, et al. microRNA166 controls root and nodule development in Medicago truncatula [J]. The Plant Journal, 2008, 54(5): 876−887. doi: 10.1111/j.1365-313X.2008.03448.x [43] TIWARI M, BHATIA S. Expression profiling of miRNAs indicates crosstalk between phytohormonal response and rhizobial infection in chickpea [J]. Journal of Plant Biochemistry and Biotechnology, 2020, 29(3): 380−394. doi: 10.1007/s13562-019-00545-9 [44] XU H, LI Y, ZHANG K, et al. miR169c‐NFYA‐C‐ENOD40 modulates nitrogen inhibitory effects in soybean nodulation [J]. New Phytologist, 2021, 229(6): 3377−3392. doi: 10.1111/nph.17115 [45] SÓS-HEGEDŰS A, DOMONKOS Á, TÓTH T, et al. Suppression of NB-LRR genes by miRNAs promotes nitrogen-fixing nodule development in Medicago truncatula [J]. Plant, Cell & Environment, 2020, 43(5): 1117−1129. [46] WU Q S, XIA R X. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of Citrus under well-watered and water stress conditions [J]. Journal of Plant Physiology, 2006, 163(4): 417−425. doi: 10.1016/j.jplph.2005.04.024 [47] SONG F, HE C, YAN X, et al. Small RNA profiling reveals involvement of microRNA-mediated gene regulation in response to mycorrhizal symbiosis in Poncirus trifoliata L. Raf [J]. Tree Genetics & Genomes, 2018, 14(3): 1−14. [48] PENTIMONE I, LEBRÓN R, HACKENBERG M, et al. Identification of tomato miRNAs responsive to root colonization by endophytic Pochonia chlamydosporia [J]. Applied Microbiology and Biotechnology, 2018, 102(2): 907−919. doi: 10.1007/s00253-017-8608-7 [49] YE W, SHEN C H, LIN Y L, et al. Growth promotion-related miRNAs in Oncidium orchid roots colonized by the endophytic fungus Piriformospora indica [J]. PloS One, 2014, 9(1): e84920. doi: 10.1371/journal.pone.0084920 [50] MAILLET F, POINSOT V, ANDRÉ O, et al. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza [J]. Nature, 2011, 469(7328): 58−63. doi: 10.1038/nature09622 [51] GENRE A, CHABAUD M, TIMMERS T, et al. Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection [J]. The Plant Cell, 2005, 17(12): 3489−3499. doi: 10.1105/tpc.105.035410 [52] LAURESSERGUES D, DELAUX P M, FORMEY D, et al. The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2 [J]. The Plant Journal:for Cell and Molecular Biology, 2012, 72(3): 512−522. doi: 10.1111/j.1365-313X.2012.05099.x [53] HANLON M T, COENEN C. Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation [J]. The New Phytologist, 2011, 189(3): 701−709. doi: 10.1111/j.1469-8137.2010.03567.x [54] ETEMADI M, GUTJAHR C, COUZIGOU J M, et al. Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis [J]. Plant Physiology, 2014, 166(1): 281−292. doi: 10.1104/pp.114.246595
点击查看大图
计量
- 文章访问数: 581
- HTML全文浏览量: 176
- PDF下载量: 57
- 被引次数: 0