Meta Analysis on Effects of N-fertilization on Yield and N-uptake of Cotton Plants
-
摘要:
目的 定量评价棉花产量和氮素吸收量对施氮的响应及其影响因素,为科学施用氮肥提供参考。 方法 采用Meta分析的方法,对2002–2019年符合研究要求的43篇文献数据按照种植时段、种植区域、土壤类型、种植密度、施氮量、土壤有机质含量、土壤全氮含量、土壤碱解氮含量、土壤速效磷含量、土壤速效钾含量等进行分组,以不施氮肥为对照,探讨施氮对棉花产量和氮素吸收量影响的综合效应。 结果 在2008–2013年棉花产量增量幅度(36%)与氮素吸收量提升幅度(51%)均显著高于2002–2007年(20%、34%)和2014–2019年(28%、33%)。施氮量为300–450 kg·hm−2时棉花产量和氮素吸收量(38%、58%)显著高于施氮量>450 kg·hm−2(30%、54%)和 施氮量<300 kg·hm−2(27%、31%) 。西北区施氮肥对棉花产量提高幅度最高(45%),但氮素吸收量提高幅度最低(35%);华中区对棉花产量提高幅度最低(25%),但氮素吸收量提高幅度最高(65%);华东区居中(33%、38%)。棉花产量和氮素吸收量在种植密度<5 万株·hm−2(40%、62%)时显著高于5万~10万株·hm−2(33%、35%)和>10万株·hm−2(18%、37%)。随着种植密度的增加,棉花产量和氮素吸收量有下降趋势。黏土施用氮肥后棉花产量和氮素吸收量提高幅度(40%、56%)显著高于砂壤土(25%、28%)和壤土(36%、39%)。在土壤有机质>15 g·kg−1、土壤碱解氮含量50~100 g·kg−1、土壤速效磷含量15~30 mg·kg−1、土壤速效钾含量>300 mg·kg−1情况下,施氮较不施氮棉花产量提高幅度较高。在土壤有机质10~15 g·kg−1、土壤全氮含量>1.6 g·kg−1、土壤碱解氮含量>100 g·kg−1、土壤速效磷含量15~30 mg·kg−1、土壤速效钾含量<200 mg·kg−1情况下,施氮较不施氮棉花氮素吸收量幅度较高。 结论 施入300~450 kg·hm−2氮肥是提高和维持棉花高产的重要措施。 Abstract:Objective Yield and N-uptake of cotton plants in response to N applications and factors affecting the reaction were quantitatively analyzed with documented database. Method Meta analysis was conducted on 43 relevant articles published from 2002 to 2019 to compare the effects of the planting time, area, and N fertilization as well as the soil type, density, organic matters, total N, alkali-hydrolysable N, available phosphorus, and available potassium on the yield and N-uptake of cotton plants with those without any N application. Result The increase of 36% on yield and 51% on N-uptake of the cotton plants in 2008–2013 were significantly higher than 20% and 34%, respectively, in 2002–2007 or 28% and 33%, respectively, in 2014–2019. Increased N application promoted both yield and N-uptake of cotton plants more from the first data collection period to the second period than from the second to the last 5 years. Cotton yield and N-uptake were significantly higher with N application 300–450 kg·hm−2(38%, 58%) than N application more than 450 kg·hm−2(30%, 54%) or less than 300 kg·hm−2 (27%, 31%). There were regional variations on the effects as well. For instance, in northwest China, the fertilization resulted in the greatest increase on yield at 45% but the least on N-uptake at 35%, whereas the least on yield at 25% and the greatest on N-uptake at 65% in central China and the medium on yield at 33% and N-uptake at 38% in eastern China were observed. Increases on planting density tended to reduce the cotton yield and N-uptake. Soil type also affected the yield and N uptake as they increased significantly more in clay soil (40% and 56%, respectively) than in sandy loam (25% and 28%, respectively) and loam (36% and 39%, respectively). Grown on soil containing organic matters more than 15 g·kg−1, alkali-hydrolyzable N in the range of 50–100 g·kg−1, available phosphorus between 15–30 mg·kg−1, and available potassium greater than 300 mg·kg−1, the cotton yield was higher than without N application. And the soil containing organic matters in the range of 10–15 g·kg−1, total N more than 1.6 g·kg−1, alkali-hydrolyzable N higher than 100 g·kg−1, available phosphorus between 15–30 mg·kg−1, and available potassium less than 200 mg·kg−1 produced higher cotton N-uptake than without N fertilization. Conclusion Application of 300-450 kg·hm−2 of N fertilizer on the filed appeared to be critical for high cotton yield. -
Key words:
- N application /
- cotton /
- yield /
- N-uptake /
- meta-analysis
-
表 1 施氮影响棉花产量和氮素吸收量的Meta分析
Table 1. Meta analysis on effects of N-fertilization on yield and N-uptake of cotton plants
项目
Item样本量
Sample size显著性检验
Significance test95%置信区间下限
Bottom of 95% confidence interval95%置信区间上限
Top of 95% confidence interval失安全系数
Fail-safe number5n+10 产量 Yield 184 <0.01 0.2930 0.3514 196793 930 氮素吸收量 N uptake 103 <0.01 0.3880 0.4778 121726 525 表 2 产量主要影响因素的Meta回归分析
Table 2. Meta regression analysis on main factors affecting cotton yield
产量影响因素
Factors affecting yield自由度
df异质性统计量
Qm显著性检验
PQM种植时段 Planting time 2 13.7413 <0.01 种植区域 Planting region 2 26.1813 <0.01 土壤类型 Soil type 2 21.3611 <0.01 种植密度 Planting density 2 35.0722 <0.01 施氮量 N application 2 11.8923 <0.01 有机质含量 SOM content 2 2.8682 0.2383 全氮含量 Total N content 2 0.0427 0.9789 碱解氮含量 Available N content 2 0.7656 0.6819 速效磷含量 Available P content 2 8.8255 0.0121 速效钾含量 Available K content 2 60.2263 <0.01 表 3 氮素吸收量主要影响因素的Meta回归分析
Table 3. Meta regression analysis on main factors affecting N-uptake of cotton plantse
氮素吸收量影响因素
Factors affecting N uptake自由度
df异质性统计量
Qm显著性检验
PQM种植时段 Planting time 2 17.5224 <0.01 种植区域 Planting region 2 48.5255 <0.01 土壤类型 Soil type 2 13.0509 <0.01 种植密度 Planting density 2 36.2180 <0.01 施氮量 N application 2 33.7026 <0.01 有机质含量 SOM content 2 11.3464 <0.01 全氮含量Total N content 2 7.9870 0.0184 碱解氮含量 Available N content 2 10.1454 <0.01 速效磷含量 Available P content 2 9.9292 <0.01 速效钾含量 Available K content 2 10.4530 <0.01 -
[1] ERISMAN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world [J]. Nature Geoscience, 2008, 1(10): 636−639. doi: 10.1038/ngeo325 [2] GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands [J]. Science, 2010, 327(5968): 1008−1010. doi: 10.1126/science.1182570 [3] CONLEY D J, PAERL H W, HOWARTH R W, et al. Controlling eutrophication: Nitrogen and phosphorus [J]. Science, 2009, 323(5917): 1014−1015. doi: 10.1126/science.1167755 [4] 李鹏程, 董合林, 刘爱忠, 等. 施氮量对棉花功能叶片生理特性、氮素利用效率及产量的影响 [J]. 植物营养与肥料学报, 2015, 21(1):81−91. doi: 10.11674/zwyf.2015.0109LI P C, DONG H L, LIU A Z, et al. Effects of nitrogen application rates on physiological characteristics of functional leaves, nitrogen use efficiency and yield of cotton [J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(1): 81−91.(in Chinese) doi: 10.11674/zwyf.2015.0109 [5] 李景慧, 韩焕勇, 王友华, 等. 氮素水平对高产杂交棉功能叶生理特性及产量的影响 [J]. 江苏农业科学, 2012, 40(4):80−83. doi: 10.3969/j.issn.1002-1302.2012.04.025LI J H, HAN H Y, WANG Y H, et al. Effects of nitrogen level on physiological characteristics of functional leaves and yield of high-yield hybrid cotton [J]. Jiangsu Agricultural Sciences, 2012, 40(4): 80−83.(in Chinese) doi: 10.3969/j.issn.1002-1302.2012.04.025 [6] 李鹏程, 董合林, 刘爱忠, 等. 种植密度氮肥互作对棉花产量及氮素利用效率的影响 [J]. 农业工程学报, 2015, 31(23):122−130. doi: 10.11975/j.issn.1002-6819.2015.23.016LI P C, DONG H L, LIU A Z, et al. Effects of planting density and nitrogen fertilizer interaction on yield and nitrogen use efficiency of cotton [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(23): 122−130.(in Chinese) doi: 10.11975/j.issn.1002-6819.2015.23.016 [7] 薛晓萍, 沙奕卓, 郭文琦, 等. 棉花蕾花铃生物量、氮累积特征及临界氮浓度稀释模型 [J]. 生态学报, 2008, 28(12):6204−6211. doi: 10.3321/j.issn:1000-0933.2008.12.051XUE X P, SHA Y Z, GUO W Q, et al. Accumulation characteristics of biomass and nitrogen and critical nitrogen concentration dilution model of cotton reproductive organ [J]. Acta Ecologica Sinica, 2008, 28(12): 6204−6211.(in Chinese) doi: 10.3321/j.issn:1000-0933.2008.12.051 [8] 凌启鸿. 作物群体质量[M]. 上海: 上海科学技术出版社, 2000. [9] WATT M S, CLINTON P W, WHITEHEAD D, et al. Above-ground biomass accumulation and nitrogen fixation of broom (Cytisus scoparius L. ) growing with juvenile Pinus radiata on a dryland site [J]. Forest Ecology and Management, 2003, 184(1/2/3): 93−104. [10] 娄善伟, 高云光, 郭仁松, 等. 不同栽培密度对棉花植株养分特征及产量的影响 [J]. 植物营养与肥料学报, 2010, 16(4):953−958. doi: 10.11674/zwyf.2010.0426LOU S W, GAO Y G, GUO R S, et al. Effects of planting density on nutrition characteristics and yield of cotton [J]. Plant Nutrition and Fertilizer Science, 2010, 16(4): 953−958.(in Chinese) doi: 10.11674/zwyf.2010.0426 [11] 李长卓. 基于Meta分析研究不同耕作方式对麦田N2O排放的影响[D]. 泰安: 山东农业大学, 2020.LI C Z. Effect of different tillage methods on N2O emissions from wheat fields based on meta-analysis[D]. Taian: Shandong Agricultural University, 2020. (in Chinese) [12] BURDA B U, O'CONNOR E A, WEBBER E M, et al. Estimating data from figures with a Web-based program: Considerations for a systematic review [J]. Research Synthesis Methods, 2017, 8(3): 258−262. doi: 10.1002/jrsm.1232 [13] HEDGES L V, GUREVITCH J, CURTIS P S. The meta-analysis of response ratios in experimental ecology [J]. Ecology, 1999, 80(4): 1150−1156. doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 [14] GATTINGER A, MULLER A, HAENI M, et al. Enhanced top soil carbon stocks under organic farming [J]. PNAS, 2012, 109(44): 18226−18231. doi: 10.1073/pnas.1209429109 [15] ROSENTHAL R. The file drawer problem and tolerance for null results [J]. Psychological Bulletin, 1979, 86(3): 638−641. doi: 10.1037/0033-2909.86.3.638 [16] VIECHTBAUER W. Conducting meta-analyses in R with the metaphor Package [J]. Journal of Statistical Software, 2010, 36(3): 1−48. [17] 董合林. 我国棉花施肥研究进展 [J]. 棉花学报, 2007, 19(5):378−384. doi: 10.3969/j.issn.1002-7807.2007.05.008DONG H L. Research progress on fertilization technology of cotton [J]. Cotton Science, 2007, 19(5): 378−384.(in Chinese) doi: 10.3969/j.issn.1002-7807.2007.05.008 [18] 任意, 张淑香, 穆兰, 等. 我国不同地区土壤养分的差异及变化趋势 [J]. 中国土壤与肥料, 2009(6):13−17. doi: 10.3969/j.issn.1673-6257.2009.06.003REN Y, ZHANG S X, MU L, et al. Change and difference of soil nutrients for various regions in China [J]. Soil and Fertilizer Sciences in China, 2009(6): 13−17.(in Chinese) doi: 10.3969/j.issn.1673-6257.2009.06.003 [19] 赖奕英, 郭承君, 占东霞, 等. 不同种植密度对新疆棉花产量及纤维品质的影响 [J]. 中国棉花, 2019, 46(9):16−18.LAI Y Y, GUO C J, ZHAN D X, et al. Effect of different planting density on yield and fiber quality of cotton in Xinjiang [J]. China Cotton, 2019, 46(9): 16−18.(in Chinese) [20] 赵新华, 束红梅, 王友华, 等. 施氮量对棉铃干物质和氮累积及分配的影响 [J]. 植物营养与肥料学报, 2011, 17(4):888−897. doi: 10.11674/zwyf.2011.0422ZHAO X H, SHU H M, WANG Y H, et al. Effects of nitrogen fertilization on accumulation and distribution of dry weight and nitrogen of cotton bolls [J]. Plant Nutrition and Fertilizer Science, 2011, 17(4): 888−897.(in Chinese) doi: 10.11674/zwyf.2011.0422 [21] 薛晓萍, 王建国, 郭文琦, 等. 氮素水平对初花后棉株生物量、氮素累积特征及氮素利用率动态变化的影响 [J]. 生态学报, 2006, 26(11):3631−3640. doi: 10.3321/j.issn:1000-0933.2006.11.015XUE X P, WANG J G, GUO W Q, et al. Effect of nitrogen applied levels on the dynamics of biomass, nitrogen accumulation and nitrogen fertilization recovery rate of cotton after initial flowering [J]. Acta Ecologica Sinica, 2006, 26(11): 3631−3640.(in Chinese) doi: 10.3321/j.issn:1000-0933.2006.11.015 [22] 郭金强, 危常州, 侯振安, 等. 施氮量对膜下滴灌棉花氮素吸收、积累及其产量的影响 [J]. 干旱区资源与环境, 2008, 22(9):139−142. doi: 10.3969/j.issn.1003-7578.2008.09.027GUO J Q, WEI C Z, HOU Z N, et al. Effect of N rates on N uptake, accumulation and yield of cotton under drip irrigation and mulch [J]. Journal of Arid Land Resources and Environment, 2008, 22(9): 139−142.(in Chinese) doi: 10.3969/j.issn.1003-7578.2008.09.027 [23] 冯媛媛, 申艳, 徐明岗, 等. 施磷量与小麦产量的关系及其对土壤、气候因素的响应 [J]. 植物营养与肥料学报, 2019, 25(4):683−691. doi: 10.11674/zwyf.18171FENG Y Y, SHEN Y, XU M G, et al. Relationship between phosphorus application amount and grain yield of wheat and its response to soil and climate factors [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 683−691.(in Chinese) doi: 10.11674/zwyf.18171 [24] 许国春, 纪荣昌, 邱永祥, 等. 我国马铃薯产量对施氮的响应及其影响因素分析 [J]. 植物营养与肥料学报, 2020, 26(4):727−737. doi: 10.11674/zwyf.19278XU G C, JI R C, QIU Y X, et al. Responses of potato yields to nitrogen application and associated driving factors in China [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 727−737.(in Chinese) doi: 10.11674/zwyf.19278 [25] 关连珠. 普通土壤学[M]. 2版. 北京: 中国农业大学出版社, 2016. [26] 葛楠楠, 石芸, 杨宪龙, 等. 黄土高原不同土壤质地农田土壤碳、氮、磷及团聚体分布特征 [J]. 应用生态学报, 2017, 28(5):1626−1632.GE N N, SHI Y, YANG X L, et al. Distribution of soil organic carbon, total nitrogen, total phosphorus and water stable aggregates of cropland with different soil textures on the Loess Plateau, Northwest China [J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1626−1632.(in Chinese) [27] LIN Y R, WATTS D B, VAN SANTEN E, et al. Influence of poultry litter on crop productivity under different field conditions: A meta-analysis [J]. Agronomy Journal, 2018, 110(3): 807−818. doi: 10.2134/agronj2017.09.0513 [28] 朱洪芬, 南锋, 徐占军, 等. 黄土高原盆地土壤有机质与影响因子的空间多尺度关系 [J]. 生态学报, 2017, 37(24):8348−8360.ZHU H F, NAN F, XU Z J, et al. Multi-scale spatial relationships between soil organic matter and influencing factors in basins of the Chinese Loess Plateau [J]. Acta Ecologica Sinica, 2017, 37(24): 8348−8360.(in Chinese) [29] 刘德平, 杨树青, 史海滨, 等. 氮磷配施条件下作物产量及水肥利用效率 [J]. 生态学杂志, 2014, 33(4):902−909.LIU D P, YANG S Q, SHI H B, et al. Crop yield and water-fertilizer utilization efficiency under combined application of nitrogen and phosphorous [J]. Chinese Journal of Ecology, 2014, 33(4): 902−909.(in Chinese)