• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

6株贝莱斯芽胞杆菌对土传病原菌的抑制活性及其作用机理

李界秋 宋文欣 蒙姣荣 王忠文

李界秋,宋文欣,蒙姣荣,等. 6株贝莱斯芽胞杆菌对土传病原菌的抑制活性及其作用机理 [J]. 福建农业学报,2022,37(3):371−380 doi: 10.19303/j.issn.1008-0384.2022.003.012
引用本文: 李界秋,宋文欣,蒙姣荣,等. 6株贝莱斯芽胞杆菌对土传病原菌的抑制活性及其作用机理 [J]. 福建农业学报,2022,37(3):371−380 doi: 10.19303/j.issn.1008-0384.2022.003.012
LI J Q, SONG W X, MENG J R, et al. Inhibitory Activity and Mechanism of Bacillus velezensi Strains against Soil-borne Pathogens [J]. Fujian Journal of Agricultural Sciences,2022,37(3):371−380 doi: 10.19303/j.issn.1008-0384.2022.003.012
Citation: LI J Q, SONG W X, MENG J R, et al. Inhibitory Activity and Mechanism of Bacillus velezensi Strains against Soil-borne Pathogens [J]. Fujian Journal of Agricultural Sciences,2022,37(3):371−380 doi: 10.19303/j.issn.1008-0384.2022.003.012

6株贝莱斯芽胞杆菌对土传病原菌的抑制活性及其作用机理

doi: 10.19303/j.issn.1008-0384.2022.003.012
基金项目: 国家现代农业产业技术体系项目(nycytxgxcxtd-16-03);广西创新驱动发展专项(桂科AA18118028-7)
详细信息
    作者简介:

    李界秋(1967−),男,硕士,高级实验师,研究方向:植物病害防控(E-mail:ljq@gxu.edu.cn

    通讯作者:

    蒙姣荣(1971−),女,博士,副教授,研究方向:植物病害防控(E-mail:mengjiaorong@163.com

    王忠文(1963−),男,硕士,副教授,研究方向:植物病害防控(E-mail:wangzwen@126.com

  • 中图分类号: S 476

Inhibitory Activity and Mechanism of Bacillus velezensi Strains against Soil-borne Pathogens

  • 摘要:   目的  明确6株贝莱斯芽胞杆菌(Bacillus velezensi)对7种土传病原菌的抑制活性,探究其拮抗机理,为土传病害的生物防治提供菌种资源和理论依据。  方法  采用平板对峙法测定拮抗菌株对7种土传病原菌的抑菌活性,用显微镜观察拮抗菌对病原物菌丝形态的影响;采用叶片离体接种法测定其防治效果,鉴别性培养基测定拮抗菌株产生的胞外酶,并用PCR扩增技术检测拮抗菌携带抗生素相关基因(mycBfenBituAsfp、bamC、erisA、spaS、bacAyndJqk)。  结果  所有测试菌株(NN01、NN02、NN04、NN05、NN88和NN95)对核盘菌(Sclerotinia sclerotiorum)、灰葡萄孢菌(Botrytis cinerea)、立枯丝核菌(Rhizoctonia solani)、尖孢镰刀菌古巴专化型(Fusarium oxysporum f. sp. cubense)、齐整小核菌(Scleritium rolfsii )和烟草疫霉(Phytophthora nicotianae)等土传病原菌的菌丝生长均具有明显的抑制作用,其中对齐整小核菌抑制作用最明显;NN01、NN02、NN04和NN88对尖孢镰刀菌菌丝有较好的抑制效果,菌丝生长抑制率为40.56%~56.30%;抑菌带边缘菌丝的形态发生明显改变,原生质浓缩或外泄、菌丝破裂和颜色加深;所有拮抗菌株均能较好抑制桑白绢病和莴苣菌核病病斑的发展,防治效果分别为53.40%~71.32%和43.57%~65.68%,高于或与枯草芽胞杆菌对照防治效果相当;所有拮抗菌都能产纤维素酶和蛋白酶,除了NN95基因组不携带fenB,其余所有菌株都携带mycBituAfenBbacAyndJ等脂肽类抗生素相关基因。  结论  所有测定的贝莱斯芽胞杆菌对6种土传病原菌均具有抑菌活性,能产纤维素酶和蛋白酶,携带mycBituAfenBbacAyndJ5种抗生素相关基因,具有防治土传病害的潜力。
  • 图  1  贝莱斯芽胞杆菌(A)及其无菌发酵液(B)对 7 种土传病害病原菌菌丝生长的抑制效果

    注:CK,LB 培养基;1,核盘菌;2,灰葡萄孢;3,立枯丝核菌;4,尖孢镰刀菌古巴专化;5,齐整小核菌;6,烟草疫霉;7,终极腐霉。

    Figure  1.  Inhibitory effects of Bv culture liquid (A) and cell-free fermentation broth (B) against 7 soil-borne pathogens

    Note: CK, LB medium;1, S. sclerotiorum; 2, B. cinerea; 3, R. solani;4, F. oxysporum f. sp. cubense; 5, S. rolfsii; 6, P.a nicotianae; 7, P. ultimum.

    图  2  贝莱斯芽胞杆菌对核盘菌(A)和灰葡萄孢(B)菌丝形态的影响

    Figure  2.  Effects of Bv strains on morphology ofS. sclerotiorum (A) and B. cinerea (B) mycelia

    图  3  拮抗贝莱斯芽胞杆菌在离体叶片上对病桑白绢病(A)和生菜菌核病(B)的抑制效果

    注:CK1,无菌水;CK2,枯草芽胞杆菌。

    Figure  3.  In vitro inhibitory effects of Bv strains against S. rolfsii on mulberry leaves (A) and S. sclerotiorum on lettuce leaves (B)

    Note: CK1, sterilized water;CK2, B. subtilis.

    图  4  拮抗贝莱斯芽胞杆菌的纤维素酶、蛋白酶和β-1,3-葡聚糖酶活性检测

    注:①1:NN01;2:NN02;3:NN04;4:NN05;5:NN88;6:NN95。②A:纤维素酶;B:蛋白酶;C:β-1,3-葡聚糖酶。

    Figure  4.  Determination of cellulase, protease, and amylase activities in Bv strains

    Note: ①1: NN01; 2: NN02; 3: NN04; 4: NN05; 5: NN88; 6: NN95. ② A: Cellulase; B: Protease; C: β-1,3-glucanase.

    图  5  贝莱斯芽胞杆菌菌株中抗生素合成基因电泳检测结果

    注:①M:1 kb DNA marker;1:NN01;2:NN02;3:NN04;4:NN05;5:NN88;6:NN95。② A:mycB (2 024 bp);B:fenB (1 400 bp);C:ituA (1 150 bp);C:mycB (2 024 bp);D:bacA (498 bp);E:yndj (212 bp)。

    Figure  5.  Detection of antibiotic-related genes in Bv strains by PCR amplification

    Note: ①M: 1 kb DNA marker; 1: NN01; 2: NN02; 3: NN04; 4: NN05; 5: NN88; 6: NN95. ② A: mycB (2 024 bp); B: fenB (1 400 bp); C: ituA (1 150 bp); C: mycB (2 024 bp); D: bacA (498 bp); E: yndj (212 bp).

    表  1  用于检测拮抗贝莱斯芽胞杆菌抗生素相关基因的引物

    Table  1.   Primers used to detect antibiotic-related genes in Bv strains

    基因
    Genes
    引物名称及其序列(5′→3′)
    Primers and the sequences
    片段大小
    Product size/bp
    抑菌物质
    Antifungal substances
    mycB MycB-F:ATGTCGGTGTTTAAAAATCAAGTAACG
    MycB-R:TTAGGACGCCAGCAGTTCTTCTATTGA
    2 024 抗霉枯草菌素
    Mycosubtilin
    fenB FenB-F:CTATAGTTTGTTGACGGCTC
    FenB-R:CAGCACTGGTTCTTGTCGCA
    1 600 丰原素
    Fengycin
    ituA ItuA-F:ATGTATACCAGTCAATTCC
    ItuA-R:GATCCGAAGCTGACAATAG
    1 047 伊枯草菌素
    Iturin
    sfp Sfp-F:ATGAAGATTTACGGAATTTA
    Sfp-R:TTATAAAAGCTCTTCGTACG
    675 表面活性素
    Surfactin
    bamC Bamc-F:AGTAAATGAACGCGCCAATC
    Bamc-R:CCCTCTCCTGCCACATAGAG
    957 杆菌霉素
    Bacillomycin
    erisA Erisa-f:TTCGATGARTTCGATTTGGA
    Erisa-r:GCAGCCCTTTTTCTTTTATTTC
    357 Ericin
    spaS Spas-f:GGTTTGTTGGATGGAGCTGT
    Spas-r:GCAAGGAGTCAGAGCAAGGT
    375 枯草菌素
    Subtilin
    bacA Baca-f:CAGCTCATGGGAATGCTTTT
    Baca-r:CTCGGTCCTGAAGGGACAAG
    498 溶杆菌素
    Bacylisin
    yndj 147-F:CAGAGCGACAGCAATCACAT
    148-147-R:TGAATTTCGGTCCGCTTATC
    212 假定蛋白
    Yndj
    qk Qk1-F:CTTAAACGTCAGAGGCGGAG
    Qk1-R:ATTGTGCAGCTGCTTGTACG
    704 枯草杆菌蛋白酶
    Subtilisin
    下载: 导出CSV

    表  2  拮抗贝莱斯芽胞杆菌对土传病原菌菌丝生长的影响

    Table  2.   Effect of Bv strains on in vitro growth of soil-borne pathogens

    病原菌
    Pathogens
    菌株及抑制率
    B. velezensi strains and Inhibition rate /%
    NN01NN02NN04NN05NN88NN95
    齐整小核菌(S. rolfsii67.59±4.12 a76.11±0.61 a74.81±6.11 a46.67±6.70 a62.41±2.57 a28.70±3.88 a
    核盘菌(S. sclerotiorum34.07±16.19d52.22±3.14 b19.44±8.85 c14.81±2.18 b13.50±2.58 d10.93±3.47 b
    灰葡萄孢菌(B. cinerea56.39±1.67 b11.11±4.16 c13.056±2.46 c13.89±5.20 b12.78±3.20 d22.78±4.11 ab
    尖孢镰刀菌古巴专化型(F. oxysporum f. sp. cubense47.78±1.41 c46.67±0.99 b56.30±3.63 b11.67±1.53 b40.56±9.65 b11.67±1.17 b
    烟草疫霉(P. nicotianae10.00±4.97 e12.96±1.67 c13.70±1.67 c15.74±1.30 b19.26±2.69 c15.37±3.02 b
    注:表中数据为3次重复的平均值±标准差,同列的相同小写字母表示在 0.05 水平上无显著差异。
    Note: Data presented as mean±standard deviations were calculated from three independent experiments.Values followed by the same letter within a row were not significantly different at 0.05 level.
    下载: 导出CSV

    表  3  离体条件下6株贝莱斯芽胞杆菌桑白绢病和生菜菌核病的防治效果

    Table  3.   In vitro control efficacy of Bv strains against S. rolfsii and S. sclerotiorum

    桑叶 mulberry生菜叶 lettuce
    菌株
    Strain
    病斑直径
    Lesion diameter/cm
    防治效果
    Control efficacy/%
    菌株
    Strain
    病斑直径
    Lesion diameter/cm
    防治效果
    Control efficacy/%
    NN01 1.61±0.12 71.32±2.26 a NN01 1.97±0.45 65.68±0.08 a
    NN05 1.91±0.28 65.65±3.70 b NN02 2.42±0.75 57.82±0.13 b
    NN02 1.95±0.20 65.05±5.12 b NN05 2.52±0.82 56.08±0.14 b
    NN95 2.15±0.10 61.46±1.87 c NN88 2.77±1.35 51.72±0.23 c
    CK2 2.25±0.39 59.67±7.00 c NN04 2.93±1.02 48.81±0.18 c
    NN04 2.33±0.23 58.18±4.19 c NN95 3.23±0.25 43.57±0.04 d
    NN88 2.60±0.26 53.40±4.67 c CK2 4.05±1.15 29.32±0.20 e
    CK1 5.58±0.12 CK1 5.73±0.91
    注:① 表中数据为3次重复的平均值±标准差,同列的相同小写字母表示在 0.05 水平上无显著差异。② CK1:无菌水;CK2:枯草芽胞杆菌。
    Note: ① Data presented as mean±standard deviations were calculated from three independent experiments. Values followed by the same letter within a row were not significantly different at 0.05 level. ② CK1:sterilized water;CK2:B. subtilis.
    下载: 导出CSV
  • [1] MARK M, SHIRI F. Prospects for biological soilborne disease control: Application of indigenous versus synthetic microbiomes [J]. Phytopathology, 2017, 107(3): 256−263. doi: 10.1094/PHYTO-09-16-0330-RVW
    [2] 黄新琦, 蔡祖聪. 土壤微生物与作物土传病害控制 [J]. 中国科学院院刊, 2017, 32(6):593−600.

    HUANG X Q, CAI Z C. Soil microbes and control of soil-borne diseases [J]. Bulletin of Chinese Academy of Sciences, 2017, 32(6): 593−600.(in Chinese)
    [3] 李文静, 王秋霞, 李园, 等. 我国防治主要土传病害的农药登记和推广情况 [J]. 农药, 2021, 60(8):547−554,570.

    LI W J, WANG Q X, LI Y, et al. Current situation of pesticides for control of mainly soil-borne diseases registration, extension and application in China [J]. Agrochemicals, 2021, 60(8): 547−554,570.(in Chinese)
    [4] 曹坳程, 刘晓漫, 郭美霞, 等. 作物土传病害的危害及防治技术 [J]. 植物保护, 2017, 43(2):6−16. doi: 10.3969/j.issn.0529-1542.2017.02.002

    CAO A C, LIU X M, GUO M X, et al. Incidences of soil-borne diseases and control measures [J]. Plant Protection, 2017, 43(2): 6−16.(in Chinese) doi: 10.3969/j.issn.0529-1542.2017.02.002
    [5] 李兴龙, 李彦忠. 土传病害生物防治研究进展 [J]. 草业学报, 2015, 24(3):204−212. doi: 10.11686/cyxb20150321

    LI X L, LI Y Z. Research advances in biological control of soil-borne disease [J]. Acta Prataculturae Sinica, 2015, 24(3): 204−212.(in Chinese) doi: 10.11686/cyxb20150321
    [6] 高游慧, 郑泽慧, 张越, 等. 根际微生态防治作物土传真菌病害的机制研究进展 [J]. 中国农业大学学报, 2021, 26(6):100−113. doi: 10.11841/j.issn.1007-4333.2021.06.11

    GAO Y H, ZHENG Z H, ZHANG Y, et al. Mechanism of rhizosphere micro-ecology in controlling soil-borne fungal diseases: A review [J]. Journal of China Agricultural University, 2021, 26(6): 100−113.(in Chinese) doi: 10.11841/j.issn.1007-4333.2021.06.11
    [7] 刘磊, 梁昌聪, 曾迪, 等. 芽胞杆菌次生代谢产物及其在土传病害防控中的应用研究进展 [J]. 热带作物学报, 2017, 38(4):775−782. doi: 10.3969/j.issn.1000-2561.2017.04.030

    LIU L, LIANG C C, ZENG D, et al. Research progress on secondary metabolites of Bacillus spp. and their applications in biocontrol of soil-borne diseases [J]. Chinese Journal of Tropical Crops, 2017, 38(4): 775−782.(in Chinese) doi: 10.3969/j.issn.1000-2561.2017.04.030
    [8] BUBICI G, KAUSHAL M, PRIGIGALLO M I, et al. Biological control agents against Fusarium wilt of banana [J]. Frontiers in Microbiology, 2019, 10: 616. doi: 10.3389/fmicb.2019.00616
    [9] MILJAKOVIC D, MARINKOVIC J, BALESEVIC TUBIC S. The Significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops [J]. Microorganisms, 2020, 8(7): 1037. doi: 10.3390/microorganisms8071037
    [10] NIU B, WANG W X, YUAN Z B, et al. Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease [J]. Frontiers in Microbiology, 2020, 11: 585404. doi: 10.3389/fmicb.2020.585404
    [11] ADENIJI A A, LOOTS D T, BABALOLA O O. Bacillus velezensis: Phylogeny, useful applications, and avenues for exploitation [J]. Applied Microbiology and Biotechnology, 2019, 103(9): 3669−3682. doi: 10.1007/s00253-019-09710-5
    [12] JIANG C H, LIAO M J, WANG H K, et al. Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinereal [J]. Biological Control, 2018, 126: 147−157. doi: 10.1016/j.biocontrol.2018.07.017
    [13] 陶永梅, 潘洪吉, 黄健, 等. 新型生防微生物因子贝莱斯芽孢杆菌(Bacillus velezensis)的研究与应用 [J]. 中国植保导刊, 2019, 39(9):26−33. doi: 10.3969/j.issn.1672-6820.2019.09.004

    TAO Y M, PAN H J, HUANG J, et al. Research and application of a novel bio-control microbial factor Bacillus velezensis [J]. China Plant Protection, 2019, 39(9): 26−33.(in Chinese) doi: 10.3969/j.issn.1672-6820.2019.09.004
    [14] 张彩文, 程坤, 张欣, 等. 贝莱斯芽胞杆菌(Bacillus velezensis)分类学及功能研究进展 [J]. 食品与发酵工业, 2019, 45(17):258−265.

    ZHANG C W, CHENG K, ZHANG X, et al. Taxonomy and functions of Bacillus velezensis: A review [J]. Food and Fermentation Industries, 2019, 45(17): 258−265.(in Chinese)
    [15] FAN B, WANG C, SONG X F, et al. Bacillus velezensis FZB42 in 2018: The gram-positive model strain for plant growth promotion and biocontrol [J]. Frontiers in Microbiology, 2018, 9: 2491. doi: 10.3389/fmicb.2018.02491
    [16] 沙月霞, 隋书婷, 曾庆超, 等. 贝莱斯芽孢杆菌E69预防稻瘟病等多种真菌病害的潜力 [J]. 中国农业科学, 2019, 52(11):1908−1917. doi: 10.3864/j.issn.0578-1752.2019.11.006

    SHA Y X,SUI S T, ZENGQ C, et al. Biocontrol potential of Bacillus velezensis strain E69 against rice blast and other fungal diseases [J]. Scientia Agricultura Sinica, 2019, 52(11): 1908−1917.(in Chinese) doi: 10.3864/j.issn.0578-1752.2019.11.006
    [17] 赵昱榕, 李磊, 谢学文, 等. 贝莱斯芽胞杆菌ZF2对多主棒孢病菌防治效果 [J]. 中国生物防治学报, 2019, 35(2):217−225.

    ZHAO Y R, LI L, XIE X W, et al. Biocontrol effect of Bacillus velezensis strain ZF2 against Corynespora cassiicola [J]. Chinese Journal of Biological Control, 2019, 35(2): 217−225.(in Chinese)
    [18] 崔文会, 孙雪, 梁承宇, 等. 土传真菌病害拮抗菌的筛选及其生防效果研究 [J]. 工业微生物, 2020, 50(2):41−47. doi: 10.3969/j.issn.1001-6678.2020.02.007

    CUI W H, SUN X, LIANG C Y, et al. Screening of antagonistic bacteria against soil-borne pathogenic fungi and evaluation of their biocontrol effects [J]. Industrial Microbiology, 2020, 50(2): 41−47.(in Chinese) doi: 10.3969/j.issn.1001-6678.2020.02.007
    [19] 王瑞昊, 邓业成, 陈广桂, 等. 罗汉果土传病害拮抗细菌的筛选及鉴定 [J]. 福建农业学报, 2021, 36(8):927−935.

    WANG R H, DENG Y C, CHEN G G, et al. Antagonistic bacteria against soil-borne diseases on Siraitia grosvenorii [J]. Fujian Journal of Agricultural Sciences, 2021, 36(8): 927−935.(in Chinese)
    [20] 许帅, 谢学文, 张昀, 等. 马铃薯枯萎病生防芽胞杆菌筛选及生防效果研究 [J]. 中国生物防治学报, 2020, 36(5):761−770.

    XU S, XIE X W, ZHANG Y, et al. Screening of biocontrol Bacillus isolate against potato Fusarium wilt and its biocontrol effect [J]. Chinese Journal of Biological Control, 2020, 36(5): 761−770.(in Chinese)
    [21] MARTÍNEZ-RAUDALES I, DE LA CRUZ-RODRÍGUEZ Y, ALVARADO-GUTIÉRREZ A, et al. Draft genome sequence of Bacillus velezensis 2A-2B strain: A rhizospheric inhabitant of Sporobolus airoides (Torr. ) Torr., with antifungal activity against root rot causing phytopathogens [J]. Standards in Genomic Sciences, 2017, 12: 73. doi: 10.1186/s40793-017-0289-4
    [22] 蒙月月. 桑树细菌性枯萎病菌生物学特性研究及其拮抗细菌和防治药剂筛选 [D]. 南宁: 广西大学, 2014.

    MENG Y Y. Research on biological characteristics of mulberry bacterial wilt pathogens, and screening of its antagonistic bacterials and bactericides [D]. Nanning: Guangxi University, 2014. (in Chinese)
    [23] 宋文欣, 陈清华, 杨惠贞, 等. 桑枝枯菌核病病菌拮抗芽孢杆菌的筛选和鉴定 [J]. 江苏农业科学, 2020, 48(22):106−110.

    SONG W X, CHEN Q H, YANG H Z, et al. Screening and identification of antagonistic Bacillus spp. against Sclerotinia sclertiorum [J]. Jiangsu Agricultural Sciences, 2020, 48(22): 106−110.(in Chinese)
    [24] 夏京津, 陈建武, 宋怿, 等. 解淀粉芽孢杆菌HE活性成分鉴定及抗菌特性分析 [J]. 南方水产科学, 2019, 15(3):41−49.

    XIA J J, CHEN J W, SONG Y, et al. Identification of antibacterial substances from Bacillus amyloliquefaciens HE and analysis of antibacterial characteristics [J]. South China Fisheries Science, 2019, 15(3): 41−49.(in Chinese)
    [25] 曲晓旭, 刘洪霞, 高玲, 等. 芽孢杆菌产抗菌脂肽调控基因快速检测 [J]. 南京农业大学学报, 2016, 39(5):858−864. doi: 10.7685/jnau.201601042

    QU X X, LIU H X, GAO L, et al. Rapid identification of the encoding genes of antimicrobial lipopeptides producted by Bacillus [J]. Journal of Nanjing Agricultural University, 2016, 39(5): 858−864.(in Chinese) doi: 10.7685/jnau.201601042
    [26] 冉军舰, 徐剑宏, 胡晓丹, 等. 1株产脂肽类抗生素芽孢杆菌的鉴定及脂肽类抗生素相关基因克隆 [J]. 食品科学, 2016, 37(17):127−132. doi: 10.7506/spkx1002-6630-201617021

    RAN J J, XU J H, HU X D, et al. Identification of a Bacillus strain producing lipopeptide and cloning of genes related to lipopeptide [J]. Food Science, 2016, 37(17): 127−132.(in Chinese) doi: 10.7506/spkx1002-6630-201617021
    [27] 武利勤, 尚宏忠, 顾海科. 拮抗匍枝根霉的生防菌R1B的筛选鉴定和抑菌活性分析 [J]. 生物技术通报, 2019, 35(4):29−35.

    WU L Q, SHANG H Z, GU H K. Screening, identification of biocontrol bacterium R1B against Rhizopus stolonifer and analysis of its antagonistic characteristics? [J]. Biotechnology Bulletin, 2019, 35(4): 29−35.(in Chinese)
    [28] JOSHI R, MCSPADDEN GARDENER B B. Identification and characterization of novel genetic markers associated with biological control activities in Bacillus subtilis [J]. Phytopathology, 2006, 96(2): 145−154. doi: 10.1094/PHYTO-96-0145
    [29] 程凯, 江欢欢, 沈标, 等. 棉花黄萎病拮抗菌的筛选及其生物防治效果 [J]. 植物营养与肥料学报, 2011, 17(1):166−174. doi: 10.11674/zwyf.2011.0123

    CHENG K, JIANG H H, SHEN B, et al. Isolation and biological control effects of cotton Verticilium wilt antagonist [J]. Plant Nutrition and Fertilizer Science, 2011, 17(1): 166−174.(in Chinese) doi: 10.11674/zwyf.2011.0123
    [30] RABBEE M F, ALI M S, CHOI J, et al. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes [J]. Molecules, 2019, 24(6): 1046. doi: 10.3390/molecules24061046
    [31] MARDANOVA AM, FANISOVNA HADIEVA G, TAFKILEVICH LUTFULLIN M, et al. Bacillus subtilis strains with antifungal activity against the phytopathogenic fungi [J]. Agricultural Sciences, 2017, 8(1): 1−20. doi: 10.4236/as.2017.81001
    [32] 邓永卓, 张家宁, 邓爽, 等. 伊枯草菌素类抗菌肽抑菌活性及机理研究进展 [J]. 中国抗生素杂志, 2020, 45(7):639−645. doi: 10.3969/j.issn.1001-8689.2020.07.002

    DENG Y Z, ZHANG J N, DENG S, et al. Progress on the antibacterial activity and antibacterial mechanisms of iturins [J]. Chinese Journal of Antibiotics, 2020, 45(7): 639−645.(in Chinese) doi: 10.3969/j.issn.1001-8689.2020.07.002
    [33] NANNAN C, VU H Q, GILLIS A, et al. Bacilysin within the Bacillus subtilis group: Gene prevalence versus antagonistic activity against Gram-negative foodborne pathogens [J]. Journal of Biotechnology, 2021, 327: 28−35. doi: 10.1016/j.jbiotec.2020.12.017
    [34] 吴黎明, 李曦, 伍辉军, 等. 芽胞杆菌抗菌二肽溶杆菌素的研究进展 [J]. 南京农业大学学报, 2018, 41(5):778−783. doi: 10.7685/jnau.201803047

    WU L M, LI X, WU H J, et al. Research advances on bacilysin from Bacillus [J]. Journal of Nanjing Agricultural University, 2018, 41(5): 778−783.(in Chinese) doi: 10.7685/jnau.201803047
    [35] 杨迪, 杜婵娟, 张晋, 等. 香蕉枯萎病拮抗菌贝莱斯芽胞杆菌的筛选鉴定及其生物学特性 [J]. 中国生物防治学报, 2021, 37(1):165−171.

    YANG D, DU C J, ZHANG J, et al. Screening, identification and biological characteristics of Bacillus velezensis with antagonst activity against banana Fusarium wilt [J]. Chinese Journal of Biological Control, 2021, 37(1): 165−171.(in Chinese)
    [36] 赵鹏鹏, 雷淑珍, 徐晓光, 等. 培养基组成对贝莱斯芽孢杆菌产抑真菌成分的影响 [J]. 食品与发酵工业, 2020, 46(5):147−151.

    ZHAO P P, LEI S Z, XU X G, et al. Effect of medium compositions on the production of antifungal components by Bacillus velezensis [J]. Food and Fermentation Industries, 2020, 46(5): 147−151.(in Chinese)
    [37] LECLÈRE V, BÉCHET M, ADAM A, et al. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities [J]. Applied and Environmental Microbiology, 2005, 71(8): 4577−4584. doi: 10.1128/AEM.71.8.4577-4584.2005
    [38] 黄伟, 张丽娟, 秦新政, 等. 贝莱斯芽胞杆菌JK19发酵液稳定性及抑菌物质初步分析 [J]. 中国生物防治学报, 2021, 38(1): 73-80.

    HUANG W, ZHANG L J, QIN X Z, et al. Preliminary analysis of stability and antimicrobial substances in fermentation broth of Bacillus velezensis JK19[J]. Chinese Journal of Biological Control, 2021, 38(1): 73-80.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  657
  • HTML全文浏览量:  228
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2022-02-25
  • 网络出版日期:  2022-03-21
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回