Fertilizer-enhanced Phytoextraction of Pennisetum sinese Roxb on Cadmium in Soil
-
摘要:
目的 探讨施用不同肥料条件下,巨菌草对镉(Cd)污染农田土壤的野外实际修复效果。 方法 以矿区周边Cd污染农田土壤为对象进行田间试验,设置对照(CK)、氯化铵(NH4Cl)、氯化钾(KCl)、尿素[CO(NH2)2]等4个处理,肥料用量为0.6 kg·m−2,分析不同处理下巨菌草对土壤Cd吸收富集的影响。 结果 NH4Cl和KCl处理均能显著增加巨菌草叶片Cd含量(P<0.05),而CO(NH2)2处理对巨菌草Cd含量的影响不显著。巨菌草生长150 d时,NH4Cl、CO(NH2)2和KCl处理均显著提高巨菌草地上部的生物量(P<0.05);对照处理下,巨菌草地上部Cd提取量为6.52 mg·株−1,NH4Cl、CO(NH2)2和KCl处理使地上部Cd提取量分别增加了70.19%、43.58%和59.05%,NH4Cl处理显著提高巨菌草对Cd的迁移系数和生物富集系数。NH4Cl、CO(NH2)2和KCl处理均提高了巨菌草对Cd提取速率,缩短对Cd污染土壤的修复年限。以150 d作为收获周期(一年收获2茬),NH4Cl处理使土壤Cd含量降低至国家农用地土壤污染风险筛选值(pH≤5.5,Cd≤0.3 mg·kg−1)所需的理论修复时间最短,为9.07年。此外,巨菌草在90~150 d期间对Cd的平均提取速率是1~90 d生长期间的1.13~2.58倍。 结论 建议以150 d作为收获周期(一年收获2茬),NH4Cl可作为巨菌草提取土壤Cd的强化剂。 Abstract:Objective Enhancing effect of chemical fertilizers on the phytoextraction of king grass (Pennisetum sinese Roxb) on cadmium (Cd) in contaminated soil were evaluated. Method Chemical fertilizers, i.e., NH4Cl, KCl, and CO(NH2)2, at the rate of 0.6 kg·m−2 were applied, along with control, to the soil nearby a cadmium-contaminated mining field for the experimentation. Result The fertilizations significantly increased the aboveground biomass of the king grass in 150 d (P<0.05). The addition of NH4Cl or KCl raised the Cd concentration in the grass leaves (P <0.05), but CO(NH2)2 showed no significant effect. Comparing with control, which had a Cd-accumulation in grass leaves of 6.52 mg·plant−1, NH4Cl increased the accumulation by 70.19%, CO(NH2)2 by 43.58%, and KCl by 59.05%. The NH4Cl addition significantly rose the coefficients of Cd transfer from land and bioconcentration in grass. Significantly, these fertilizers improved the efficiency of Cd removal from soil by king grass reducing the time for the pollution remediation. The Cd-removal in 90-150 d was 1.13-2.58 times greater than that in 1-90 d. It was estimated that a 150 d harvest cycle and twice a year on king grass planted in the Cd-contaminated field fertilized with NH4Cl could turn the soil to meet the minimum national safety requirements of pH≤5.5 and Cd≤0.3 mg·kg−1 in 9.07 years. Conclusion It was recommended twice a year of 150 d harvest cycle with NH4Cl-fertilization be applied on the Cd-contaminated soil to mitigate the pollution in soil. -
Key words:
- King grass (Pennisetum sinese Roxb) /
- cadmium /
- fertilizer /
- field experimentation /
- removal efficiency
-
表 1 不同处理对Cd在土壤-巨菌草体系中的转移系数和富集系数的影响
Table 1. Coefficients of transfer and bioconcentration between soil and king grass under different fertilizer treatments
处理
Treatments90 d 150 d TF TF′ BCFDTPA TF TF′ BCFDTPA CK 0.73±0.01 b 4.10±0.22 c 2.17±0.11 b 0.46±0.02 b 5.08±0.44 b 2.25±0.07 b NH4Cl 1.09±0.02 a 7.29±1.44 a 2.35±0.10 ab 0.57±0.02 a 8.94±0.38 a 4.13±0.17 a CO(NH2)2 0.71±0.02 b 6.09±0.33 b 2.38±0.09 a 0.44±0.02 b 7.77±0.66 a 2.17±0.08 b KCl 0.57±0.03 c 3.93±1.35 c 1.96±0.08 c 0.37±0.02 c 5.86±0.44 b 3.96±0.11 a 注:同列不同字母表示不同处理间存在显著性差异(P<0.05)。
Note: Different letters in the same column indicate significant difference at P<0.05.表 2 不同处理巨菌草对Cd污染土壤的修复年限和提取速率
Table 2. Time and extraction rate of Cd-removal from soil by king grass under different fertilizer treatments
处理
Treatments修复年限 The time for remediation/a 株提取速率 The rate of extraction/(mg·a−1) 全量基准
Based on soil total Cd content有效量基准
Based on DTPA-Cd1~90 d 1~150 d 90~150 d 90 d 150 d 90 d 150 d CK 15.21 15.49 9.08 9.15 13.32 15.60 19.08 NH4Cl 10.25 9.07 7.33 6.42 19.92 26.64 36.72 CO(NH2)2 12.61 10.78 7.57 6.26 16.08 22.44 32.16 KCl 13.32 9.73 7.4 5.37 15.24 24.96 39.36 -
[1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 北京: 环境保护部, 国土资源部, 2014. [2] CLEMENS S, AARTS M G M, THOMINE S, et al. Plant science: The key to preventing slow cadmium poisoning[J]. 2013, 18: 92−99. [3] SPONZA D, KARAOGLU N. Environmental geochemistry and pollution studies of Aliaga metal industry district[J]. 2002, 27: 541−553. [4] JIE L, WEI Q, KADIISKA M B. Role of oxidative stress in cadmium toxicity and carcinogenesis[J]. 2009, 238: 209−214. [5] SARWAR N, IMRAN M, SHAHEEN M R, et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives [J]. Chemosphere, 2017, 171: 710−721. doi: 10.1016/j.chemosphere.2016.12.116 [6] LIU Z L, CHEN W, HE X Y, et al. Effects of cadmium on growth and accumulation characteristics in leaf bud of Lonicera japonica Thunb[C]. International Symposium on Water Resource and Environmental Protection IEEE, 2011: 2928−2930. [7] ZHANG S, LIN H, DENG L, et al. Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L. [J]. Ecological Engineering, 2013, 51(2): 133−139. [8] SUN Y, ZHOU Q, WANG L, et al. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator [J]. Journal of Hazardous Materials, 2009, 161(2): 808−814. [9] 杨姝, 贾乐, 毕玉芬, 等. 7种紫花苜蓿对云南某铅锌矿区土壤镉铅的累积特征及品质差异 [J]. 农业资源与环境学报, 2018, 35(3):222−228.YANG S, JIA L, BI Y F, et al. Interspecific differences and accumulative characteristics of cadmium and lead about seven alfalfa (Medicago Sativa L. ) cultivars in a Lead-Zinc mine of Yunnan, China [J]. Journal of Agricultural Resources and Environment, 2018, 35(3): 222−228.(in Chinese) [10] ZHANG X F, XIA H P, ZHI A L, et al. Potential of four forage grasses in remediation of Cd and Zn contaminated soils [J]. Bioresource Technology, 2010, 101(6): 2063−2066. doi: 10.1016/j.biortech.2009.11.065 [11] CHEN Y H, HU L, LIU X L, et al. Influences of king grass (Pennisetum sinese Roxb)-enhanced approaches for phytoextraction and microbial communities in multi-metal contaminated soil [J]. Geoderma, 2017, 307: 253−266. doi: 10.1016/j.geoderma.2017.07.042 [12] ZACCHEO P, CRIPPA L, PASTA V. Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower [J]. Plant & Soil., 2006, 283(1/2): 43−56. [13] 宋珺宇. 氮素形态对杨树耐镉胁迫及吸收、富集效率的影响[D]. 杨凌: 西北农林科技大学, 2019.SONG J Y. Effects of nitrogen forms on cadmium tolerance, absorption and enrichment efficiency of poplar[D]. Yangling: Northwest Agriculture and Forestry University, 2019. [14] 聂俊华, 刘秀梅, 王庆仁. Pb(铅)富集植物品种的筛选 [J]. 农业工程学报, 2004(4):255−258. doi: 10.3321/j.issn:1002-6819.2004.04.061NIE J H, LIU X M, WANG Q R. Screening out of Pb hypertolerant plant species [J]. Transactions of the CSAE, 2004(4): 255−258.(in Chinese) doi: 10.3321/j.issn:1002-6819.2004.04.061 [15] ELOUEAR Z, BOUHAMED F, BOUJELBEN N, et al. Application of sheep manure and potassium fertilizer to contaminated soil and its effect on zinc, cadmium and lead accumulation by alfalfa plants [J]. Sustainable Environment Research., 2016, 26(3): 131−135. doi: 10.1016/j.serj.2016.04.004 [16] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 12−14. [17] CHEN Y H, LIU M J, DENG Y W, et al. Comparison of ammonium fertilizers, EDTA, and NTA on enhancing the uptake of cadmium by an energy plant, napier grass ( Pennisetum purpureum Schumach ) [J]. Journal of Soils & Sediments., 2017, 17(12): 2786−2796. [18] WANG J C, CHEN X F, CHU S H, et al. Influence of Cd toxicity on subcellular distribution, chemical forms, and physiological responses of cell wall components towards short-term Cd stress in Solanum nigrum [J]. Environment Science and Pollution Research, 2021, 28: 13955−13969. doi: 10.1007/s11356-020-11505-5 [19] SHANG X S, XUE W X, JIANG Y, et al. Ca alleviated Cd-induced toxicity in salix matsudana by affecting Cd absorption, translocation, subcellular distribution, and chemical forms[J]. BMC Plant Biology, 2020. DOI: 10.21203/rs.2.24734/v1 [20] SMOLDERS E, MCLAUGHLIN M J. Effect of Cl− on Cd uptake by swiss chard in nutrient solutions [J]. Plant and Soil, 1996, 179(1): 57−64. doi: 10.1007/BF00011642 [21] SMOLDERS E, MCLAUGHLIN MJ. Chloride increases cadmium uptake in swiss chard in a resin-buffered nutrient solution [J]. Soil Science Society of America Journal, 1996, 60(5): 1443−1447. doi: 10.2136/sssaj1996.03615995006000050022x [22] ZACCHEO P, CRIPPA L, PASTA V D M. Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower [J]. Plant and Soil, 2006, 283(1/2): 43−56. [23] 王剑, 杨婷婷, 朱有为, 等. 田间条件下施用石灰石及调理剂降低土壤镉可提取性的效应 [J]. 水土保持学报, 2021, 35(4):334−340, 368.WANG J, YANG T T, ZHU Y W, et al. Effects of limestone and conditioner on reducing soil Cd extractability under field conditions [J]. Journal of Soil and Water Conservation, 2021, 35(4): 334−340, 368.(in Chinese) [24] GRUTER R, COSTEROUSSE B, BERTONI A, et al. Green manure and long-term fertilization effects on available soil zinc and cadmium and their accumulation by wheat (Triticum aestivum L. ) at different growth stages [J]. The Science of the Total Environment, 2017, 599-600: 1330−1343. doi: 10.1016/j.scitotenv.2017.05.070 [25] LIU W X, ZHANG C J, HU P J, et al. Influence of nitrogen form on the phytoextraction of cadmium by a newly discovered hyperaccumulator Carpobrotus rossii [J]. Environmental Science and Pollution Research, 2016, 23: 1246−1253. doi: 10.1007/s11356-015-5231-y