Cloning and Expression of Nitrite Reductase Gene HcNiR in Kenaf
-
摘要:
目的 了解红麻亚硝酸还原酶基因HcNiR生物信息学特性及组织表达特异性,为培育红麻氮高效利用品种提供理论依据。 方法 以红麻材料349叶片的cDNA为模板,利用PCR扩增HcNiR基因的CDS序列,采用生物信息学方法分析HcNiR的氨基酸组成、蛋白质跨膜结构、信号肽、高级结构以及蛋白的同源进化树;采用实时荧光定量PCR检测HcNiR基因在红麻不同组织的表达情况。 结果 HcNiR基因cDNA全长1395 bp,编码蛋白含有464个氨基酸,包含2个保守的亚硝酸和亚硫酸还原酶4Fe-4S结构域及铁氧蛋白部分结构域。HcNiR蛋白是一个不含跨膜转运结构与信号肽的亲水稳定性蛋白质,该蛋白质等电点是5.49,分子量51.68 kDa;具有26处潜在磷酸化位点。在其蛋白二级结构中,α-螺旋和无规则卷曲所占比例超过70%。通过氨基酸序列同源性分析发现,红麻HcNiR氨基酸序列与木槿HsNiR氨基酸序列相似性较高,达到97.37%,都含有铁-硫/铁血红素结合位点。进化树分析结果表明,红麻HcNiR基因与木槿HsNiR基因亲缘关系较近。组织特异性表达结果显示,红麻HcNiR基因在叶中的表达量高于根。 结论 HcNiR基因编码蛋白含亚硝酸和亚硫酸还原酶4Fe-4S结构域及铁氧蛋白部分结构域;HcNiR基因具有组织表达特异性,在红麻叶片中表达较高,推测其主要在初级氮的同化过程中发挥重要调控作用。 Abstract:Objective Bioinformatics and expressions of the nitrate reductase gene of kenaf(Hibiscus cannabinus) were studied for breeding varieties highly efficient in nitrogen utilization. Method From the leaf of kenaf 349, the coding sequences (CDS) of HcNiR was amplified by PCR. Bioinformatics method was applied to analyze the amino acid sequences, protein transmembrane structure, protein signal peptide, high-level structures, and homologous evolutionary tree associated with the gene, while the expression in various tissues detected by qRT-PCR. Result The full length of HcNiR cDNA was 1395 bp encoded 464 amino acids. The amino acid sequence contained two conserved nitrite and sulfite reductase 4Fe-4S domains and two conserved nitrite/sulfite reductase ferredoxin-like half domains. The predicted stable, hydrophilic HcNiR protein with an isoelectric point of 5.49 and molecular weight of 51.68 kDa had no transmembrane domain or signal peptide. It contained 26 potential phosphorylation sites in a secondary structure that consisted of more than 70% in the forms of alpha helix and irregular coils. The amino acid sequence of HcNiR was 97.37% homologous with that of H. syriacus, and both included nitrite and sulfite reductases iron-sulfur/siroheme-binding sites. The phylogenetic tree on HcNiR showed it closely related to HsNiR. The HcNiR expression was higher in the leaves than in the roots of a kenaf plant. Conclusion HcNiR contained two conserved nitrite and sulfite reductase 4Fe-4S domains and two conserved nitrite/sulfite reductase ferredoxin-like half domains. The gene was abundantly expressed in the kenaf leaves and speculated to be mainly involved in the process of primary nitrogen assimilation. -
Key words:
- kenaf /
- nitrate reductase /
- HcNiR /
- gene cloning /
- expression analysis
-
图 9 HcNiR的氨基酸序列对比
HcNiR:红麻;HsNiR:木槿(XP_039006864.1);TcNiR:可可树(XP_007042430.2);GhNiR:陆地棉(ADJ68001.1);GrNiR:雷蒙德氏棉(XP_012463711.1)。
Figure 9. Amino acid sequences of HcNiR
HcNiR: H. cannabinus; HsNiR: H. syriacus (XP_039006864.1); TcNiR: Theobroma cacao (XP_007042430.2); GhNiR: Gossypium hirsutum (ADJ68001.1); GrNiR: Gossypium raimondii (XP_012463711.1).
表 1 引物序列
Table 1. Primer sequence
引物名称
Primer names引物序列(5′-3′)
Primer sequence(5′-3′)HcNiR-F ATGACAGATGGGAGATTTATGATG HcNiR-R GCATTTTCCACTTCTTCTTCCC HcNiR-qPCR-F TCTTGGTTACAGGGGCAATAGAC HcNiR-qPCR-R TGGACACCAAGATAGTCTCTCCT beta-actin-F ATCCTCCGTCTTGACCTTG beta-actin-R TGTCCGTCAGGCAACTCAT 表 2 HcNiR基因编码蛋白质产物一级结构预测分析
Table 2. Primary structure of HcNiR encoded protein
一级结构特征
Characteristics of
primary structure氨基酸数量
Number of
amino acids等电点
pI相对分子质量
Relative molecular
mass/Da分子式
Molecular
formula正电荷
残基
Arg+Lys负电荷
残基
Asp+Glu平均疏水性
Average
hydrophobicity脂肪系数(AI)
Fatty
coefficient不稳定系数(Ⅱ)
Instability
coefficient (Ⅱ)半衰期
Estimated
half-life/h预测结果
Prediction result464 5.490 51683.220 C2276H3632N644O681S24 54 64 −0.289 89.480 37.930 30 -
[1] ZHANG L W, XU Y, ZHANG X T, et al. The genome of kenaf (Hibiscus cannabinus L. ) provides insights into bast fibre and leaf shape biogenesis [J]. Plant Biotechnology Journal, 2020, 18(8): 1796−1809. doi: 10.1111/pbi.13341 [2] AYADI R, HANANA M, MZID R, et al. Hibiscus cannabinus L.- kenaf: A review paper [J]. Journal of Natural Fibers, 2017, 14(4): 466−484. [3] 陶爱芬, 张晓琛, 祁建民. 红麻综合利用研究进展与产业化前景 [J]. 中国麻业科学, 2007, 29(1):1−5. doi: 10.3969/j.issn.1671-3532.2007.01.001TAO A F, ZHANG X C, QI J M. Research progress and industrialization prospect of comprehensive utilization on kenaf [J]. Plant Fiber Sciences in China, 2007, 29(1): 1−5.(in Chinese) doi: 10.3969/j.issn.1671-3532.2007.01.001 [4] SWINGLE R S, URIAS A R, DOYLE J C, et al. Chemical composition of kenaf forage and its digestibility by lambs and in vitro [J]. Journal of Animal Science, 1978, 46(5): 1346−1350. doi: 10.2527/jas1978.4651346x [5] 李超显. 饲料产业的环保问题及解决对策 [J]. 中国饲料, 2019(18):114−117.LI C X. Environmental protection problems and solutions in feed industry [J]. China Feed, 2019(18): 114−117.(in Chinese) [6] SEITH B, SCHUSTER C, MOHR H. Coaction of light, nitrate and a plastidic factor in controlling nitrite-reductase gene expression in spinach [J]. Planta, 1991, 184(1): 74−80. [7] ZHANG J, LV J, XIE J M, et al. Nitrogen source affects the composition of metabolites in pepper (Capsicum annuum L. ) and regulates the synthesis of capsaicinoids through the GOGAT-GS pathway [J]. Foods (Basel, Switzerland), 2020, 9(2): 150. [8] KYAING M, 顾立江, 程红梅. 植物中硝酸还原酶和亚硝酸还原酶的作用 [J]. 生物技术进展, 2011, 1(3):159−164.KYAING M, GU L J, CHENG H M. The role of nitrate reductase and nitrite reductase in plant [J]. Current Biotechnology, 2011, 1(3): 159−164.(in Chinese) [9] LAHNERS K, KRAMER V, BACK E, et al. Molecular cloning of complementary DNA encoding maize nitrite Reductase: Molecular analysis and nitrate induction [J]. Plant Physiology, 1988, 88(3): 741−746. doi: 10.1104/pp.88.3.741 [10] WANG R C, XING X J, CRAWFORD N. Nitrite acts as a transcriptome signal at micromolar concentrations in Arabidopsis roots [J]. Plant Physiology, 2007, 145(4): 1735−1745. doi: 10.1104/pp.107.108944 [11] TAKAHASHI M, SASAKI Y, IDA S, et al. Nitrite reductase gene enrichment improves assimilation of NO2 in Arabidopsis [J]. Plant Physiology, 2001, 126(2): 731−741. doi: 10.1104/pp.126.2.731 [12] KATO C, TAKAHASHI M, SAKAMOTO A, et al. Differential expression of the nitrite reductase gene family in tobacco as revealed by quantitative competitive RT-PCR [J]. Journal of Experimental Botany, 2004, 55(403): 1761−1763. doi: 10.1093/jxb/erh182 [13] OZAWA K, KAWAHIGASHI H. Positional cloning of the nitrite reductase gene associated with good growth and regeneration ability of calli and establishment of a new selection system for Agrobacterium-mediated transformation in rice (Oryza sativa L. ) [J]. Plant Science, 2006, 170(2): 384−393. doi: 10.1016/j.plantsci.2005.09.015 [14] 夏磊, 王团团, 段莉莉, 等. 黄瓜亚硝酸还原酶基因(CsNiR)的克隆及对外植体分化的影响 [J]. 南京农业大学学报, 2020, 43(2):231−237. doi: 10.7685/jnau.201906021XIA L, WANG T T, DUAN L L, et al. Cloning of nitrite reductase gene(CsNiR)in cucumber and its effect on explant differentiation [J]. Journal of Nanjing Agricultural University, 2020, 43(2): 231−237.(in Chinese) doi: 10.7685/jnau.201906021 [15] 张超, 黄思齐, 邓勇, 等. 高蛋白饲用红麻品种筛选及饲用品质研究 [J]. 中国麻业科学, 2021, 43(6):287−293. doi: 10.3969/j.issn.1671-3532.2021.06.002ZHANG C, HUANG S Q, DENG Y, et al. Selection of high protein forage kenaf varieties and study on their feed quality [J]. Plant Fiber Sciences in China, 2021, 43(6): 287−293.(in Chinese) doi: 10.3969/j.issn.1671-3532.2021.06.002 [16] 邓勇. 硫化氢缓解红麻重金属镉胁迫功能分析[D]. 北京: 中国农业科学院, 2019.DENG Y. Function analysis of hydrogen sulfide-mediated alleviation of cadmium stress in kenaf(Hibiscus cannabinus L.) seedlings[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese) [17] 张超, 张勇, 满百膺, 等. 大豆GmPID基因生物信息学分析及克隆 [J]. 东北农业大学学报, 2020, 51(1):13−22. doi: 10.3969/j.issn.1005-9369.2020.01.002ZHANG C, ZHANG Y, MAN B Y, et al. Bioinformatic analysis and cloning of gene GmPID in soybean [J]. Journal of Northeast Agricultural University, 2020, 51(1): 13−22.(in Chinese) doi: 10.3969/j.issn.1005-9369.2020.01.002 [18] 田华, 段美洋, 王兰. 植物硝酸还原酶功能的研究进展 [J]. 中国农学通报, 2009, 25(10):96−99.TIAN H, DUAN M Y, WANG L. Research progress on nitrate reductase functions in plants [J]. Chinese Agricultural Science Bulletin, 2009, 25(10): 96−99.(in Chinese) [19] NAVARRO F J, PERDOMO G, TEJERA P, et al. The role of nitrate reductase in the regulation of the nitrate assimilation pathway in the yeast Hansenula polymorpha [J]. FEMS Yeast Research, 2003, 4(2): 149−155. doi: 10.1016/S1567-1356(03)00163-6 [20] 佘茂云, 陈朵朵, 冯晨, 等. 小麦亚硝酸还原酶基因及调控序列克隆、定位和表达分析 [J]. 作物学报, 2011, 37(1):28−39. doi: 10.3724/SP.J.1006.2011.00028SHE M Y, CHEN D D, FENG C, et al. Isolation, chromosome assignment, and expression assay of nitrite reductase gene and regulatory sequence in wheat [J]. Acta Agronomica Sinica, 2011, 37(1): 28−39.(in Chinese) doi: 10.3724/SP.J.1006.2011.00028 [21] 曾彦达, 石晓艳, 马凤鸣. 甜菜亚硝酸还原酶(NiR)基因的克隆与分析 [J]. 东北农业大学学报, 2012, 43(1):77−82. doi: 10.3969/j.issn.1005-9369.2012.01.013ZENG Y D, SHI X Y, MA F M. Cloning and analysis of NiR gene in sugar beet [J]. Journal of Northeast Agricultural University, 2012, 43(1): 77−82.(in Chinese) doi: 10.3969/j.issn.1005-9369.2012.01.013 [22] HIRASAWA M, FUKUSHIMA K, TAMURA G, et al. Immunochemical characterization of nitrite reductases from spinach leaves, spinach roots and other higher plants [J]. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1984, 791(2): 145−154. doi: 10.1016/0167-4838(84)90004-9 [23] 张芬, 王丽鸳, 成浩, 等. 茶树亚硝酸还原酶基因CsNiR的克隆及表达分析 [J]. 园艺学报, 2016, 43(7):1348−1356.ZHANG F, WANG L Y, CHENG H, et al. Molecular cloning and expression analysis of nitrite reductase gene CsNiR in tea plant [J]. Acta Horticulturae Sinica, 2016, 43(7): 1348−1356.(in Chinese) [24] 孙菲菲, 蒋芳玲, 侯喜林, 等. 白菜亚硝酸还原酶基因BcNiR的克隆及表达分析 [J]. 园艺学报, 2009, 36(10):1511−1518. doi: 10.3321/j.issn:0513-353X.2009.10.017SUN F F, JIANG F L, HOU X L, et al. Molecular cloning and characterization of nitrite reductase gene BcNiR from non-heading Chinese cabbage [J]. Acta Horticulturae Sinica, 2009, 36(10): 1511−1518.(in Chinese) doi: 10.3321/j.issn:0513-353X.2009.10.017 [25] 石晓艳, 曾彦达, 李世龙, 等. 甜菜亚硝酸还原酶(NiR)基因的克隆与表达分析 [J]. 作物学报, 2011, 37(8):1406−1414. doi: 10.3724/SP.J.1006.2011.01406SHI X Y, ZENG Y D, LI S L, et al. Molecular cloning and characterization of nitrite reductase gene from sugarbeet [J]. Acta Agronomica Sinica, 2011, 37(8): 1406−1414.(in Chinese) doi: 10.3724/SP.J.1006.2011.01406 [26] 陈何, 王乐, 赵春丽, 等. 氮素和红蓝复合光配比对苋菜幼苗亚硝酸还原酶活性及其基因表达的影响 [J]. 中国农业大学学报, 2021, 26(8):61−71. doi: 10.11841/j.issn.1007-4333.2021.08.07CHEN H, WANG L, ZHAO C L, et al. Effects of nitrogen and red and blue light on NiR enzyme activity and gene expression in Amaranthus tricolor L. seedlings [J]. Journal of China Agricultural University, 2021, 26(8): 61−71.(in Chinese) doi: 10.11841/j.issn.1007-4333.2021.08.07