Effects of Molybdenum on Growth and Nitrogen Uptake/Utilization of Malus sieversii Seedlings
-
摘要:
目的 研究钼对苹果砧木新疆野苹果幼苗生长和氮吸收利用特性的影响,为苹果生产中科学施钼,提高氮素利用率提供理论依据。 方法 以新疆野苹果幼苗为试材,设置5个供钼水平:CK、M1、M2、M3、M4,相应为0.00、0.25、0.50、1.50、3.00 μmol·L−1的H2MoO4·H2O。运用15N示踪技术,研究不同供钼水平对15N利用率和各器官Ndff值(植株器官从肥料15N中吸收分配到的15N量对该器官全氮量的贡献率)的影响,同时测定不同钼含量对幼苗生长、根系形态及活力和叶片中硝酸还原酶活性的影响。 结果 与CK相比,施钼显著提高了幼苗各器官的生物量和15N利用率,并且随着施钼水平的增加均表现为先升高后下降的趋势,至M2处理时均达到最大值,15N利用率相对于CK处理提高了123%。0.00~0.50 μmol·L−1钼水平下,新疆野苹果根系长度、表面积及根尖数均显著增加,叶片中硝酸还原酶(NR)活性和根系活力显著提高,各器官Ndff值也显著增加,而1.50~3.00 μmol·L−1钼处理显著抑制了根系的生长,新疆野苹果幼苗根系长度、表面积、根尖数量均显著下降,叶片中NR活性及根系活力、各器官的Ndff值也表现出下降趋势,各指标均与M1处理差异不显著。 结论 0.50 μmol·L−1的钼酸处理,一方面有利于植株生长和根系发生,增强对氮素的吸收;另一方面提高了硝酸还原酶活性,通过推进氮还原的进程促进了氮素的利用。因此,在此浓度钼酸处理下幼苗15N利用率最高。 Abstract:Objectives Effects of molybdenum (Mo) on the growth and nitrogen uptake/utilization of Malus sieversii seedlings were studied for the cultivation and crop production improvements. Methods M. sieversii seedlings were grown under 5 levels of Mo supply equivalent to 0.00 (CK), 0.25 (M1), 0.50 (M2), 1.50 (M3), and 3.00 μmol·L−1 (M4) H2MoO4·H2O. The 15N utilization and Ndff (i.e., rate of 15N absorbed by a plant organ from 15N in fertilizer to total nitrogen in the organ) were determined using the 15N labeled tracer method. The growth, root morphology, and nitrate reductase (NR) activity in leaves of the seedlings were monitored. Results The Mo applications significantly altered the biomass and 15N utilization rate of seedlings in an increasing pattern with increasing Mo to peak at M2 (the 15N utilization rate was 123% of that of CK), then followed by a decline. From 0 to 0.5 μmol Mo·L−1, the length, surface area, number of tips and activities of the seedling roots, the NR in the leaves, and the Ndff of all organs significantly increased. But further increasing Mo from 1.5 to 3.0 μmol·L−1 caused significant decreases on all indicators to become not significantly different from those under the M1 treatment. Conclusions By treating potato rootstocks with Mo at 0.5 μmol·L−1, the seedling growth, root formation, and plant nitrogen absorption were enhanced. The seedling 15N utilization rate was maximized by the treatment that effectively promoted nitrogen reduction due to the increased nitrate reductase activity. -
Key words:
- Malus sieversii /
- molybdenum /
- root /
- nitrogen /
- 15N utilization
-
表 1 不同钼水平下的植株生物量
Table 1. Biomass of M. hupehensis seedlings under Mo treatments
处理
Treatment根干重
Dry weight of
root/g茎干重
Dry weight of
stem/g叶干重
Dry weight of
leaf /g总干重
Total dry
weight/gCK 0.62±0.03 e 0.39±0.02 d 0.63±0.02 e 1.63±0.03 e M1 0.82±0.01 b 0.48±0.04 c 0.71±0.03 d 2.01±0.06 c M2 0.96±0.03 a 0.65±0.01 a 0.96±0.03 a 2.57±0.06 a M3 0.76±0.02 c 0.56±0.01 b 0.82±0.01 b 2.14±0.03 b M4 0.71±0.02 d 0.41±0.02 d 0.76±0.01 c 1.88±0.04 d 同一列小写字母表示差异达0.05显著水平。表2~4同。 Data followed by lowercase letters on same column indicate significant difference at P<0.05. Same for Table 2–4. 表 2 不同供钼水平下新疆野苹果的根系形态指标
Table 2. Morphological indices of M. sieversii roots under Mo treatments
处理
Treatment根系长度
Root Length/cm根系总表面积
Total root surface area/cm2根尖数
Number of root tips/个根系活力
Root activity/(μg·g−1·h−1)CK 269.52±13.95 e 105.64±11.75 d 2694.8±80.19 d 75.14±1.76 c M1 447.56±29.56 b 119.97±8.27 c 3011.6±101.59 c 85.14±2.09 b M2 576.17±14.06 a 188.09±7.29 a 4842.6±149.48 a 110.93±1.72 a M3 399.09±17.68 c 143.38±6.36 b 3424.2±152.93 b 83.77±0.60 b M4 340.76±18.24 d 128.65±2.21 c 3173.0±121.88 c 71.39±3.02 c 表 3 不同钼水平下植株各器官的Ndff值和叶片NR活性
Table 3. Ndff of organs and NR activity of leaves under Mo treatments
处理
TreatmentNdff/% NR活性
NR activity/
(μg·g−1·h−1)叶片
Leaves茎
Stems根
RootsCK 0.73±0.02 d 1.12±0.03 d 1.09±0.02 c 10.44±0.39 d M1 0.81±0.03 b 1.19±0.01 c 1.18±0.02 b 16.78±1.25 bc M2 0.91±0.02 a 1.33±0.03 a 1.30±0.07 a 22.52±2.55 a M3 0.78±0.02 bc 1.29±0.01 b 1.19±0.03 b 17.25±1.26 b M4 0.77±0.02 c 1.19±0.01 c 1.13±0.01 bc 14.29±1.05 c 表 4 不同钼水平下植株的全氮量和15N吸收总量
Table 4. Total N and 15N absorption of M. hupehensis seedlings under Mo treatments
处理 Treatment 全氮量 Total N/mg 15N吸收总量 15N absorption/mg CK 29.53±0.34 e 0.27±0.01 e M1 37.44±0.76 c 0.39±0.01 c M2 53.56±0.86 a 0.62±0.02 a M3 41.74±0.47 b 0.43±0.01 b M4 35.44±0.96 d 0.35±0.01 d -
[1] 张合琼, 张汉马, 梁永书, 等. 植物硝酸盐转运蛋白研究进展 [J]. 植物生理学报, 2016, 52(2):141−149.ZHANG H Q, ZHANG H M, LIANG Y S, et al. Research progress of nitrate in plant transport mechanism [J]. Plant Physiology Journal, 2016, 52(2): 141−149.(in Chinese) [2] 李洪娜, 许海港, 任饴华, 等. 不同施氮水平对矮化富士苹果幼树生长、氮素利用及内源激素含量的影响 [J]. 植物营养与肥料学报, 2015, 21(5):1304−1311. doi: 10.11674/zwyf.2015.0525LI H N, XU H G, REN Y H, et al. Effect of different N application rates on plant growth, 15N-urea utilization and hormone content of dwarf apple trees [J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(5): 1304−1311.(in Chinese) doi: 10.11674/zwyf.2015.0525 [3] STEFANELLI D, GOODWIN I, JONES R. Minimal nitrogen and water use in horticulture: Effects on quality and content of selected nutrients [J]. Food Research International, 2010, 43(7): 1833−1843. doi: 10.1016/j.foodres.2010.04.022 [4] NIE Z J, HU C X, LIU H E, et al. Differential expression of molybdenum transport and assimilation genes between two winter wheat cultivars (Triticum aestivum) [J]. Plant Physiology and Biochemistry, 2014, 82: 27−33. doi: 10.1016/j.plaphy.2014.05.002 [5] HU Y L, RIBBE M W. Biosynthesis of the iron-molybdenum cofactor of nitrogenase [J]. Journal of Biological Chemistry, 2013, 288(19): 13173−13177. doi: 10.1074/jbc.R113.454041 [6] 喻敏, 王运华, 胡承孝. 种子钼对冬小麦硝酸还原酶活性、干物质重及产量的影响 [J]. 植物营养与肥料学报, 2000, 6(2):220−226. doi: 10.3321/j.issn:1008-505X.2000.02.015YU M, WANG Y H, HU C X. Influence of seed molybdenum on nitrate reductase activity, shoot dry matter and grain yield of winter wheat cultivars [J]. Plant Natrition and Fertilizen Science, 2000, 6(2): 220−226.(in Chinese) doi: 10.3321/j.issn:1008-505X.2000.02.015 [7] KAISER B N, GRIDLEY K L, NGAIRE BRADY J, et al. The role of molybdenum in agricultural plant production [J]. Annals of Botany, 2005, 96(5): 745−754. doi: 10.1093/aob/mci226 [8] 刘利, 张蕊, 杨超, 等. 叶面喷施钼肥对草莓幼苗氮代谢关键酶活性与15N吸收、分配及利用的影响 [J]. 植物生理学报, 2016, 52(7):1035−1044.LIU L, ZHANG R, YANG C, et al. Effect of sodium molybdate foliar sprays on key enzymes activities of nitrogen metabolism and 15N absorption, distribution and utilization of strawberry seedlings [J]. Plant Physiology Journal, 2016, 52(7): 1035−1044.(in Chinese) [9] KOVÁCS B, PUSKÁS-PRESZNER A, HUZSVAI L, et al. Effect of molybdenum treatment on molybdenum concentration and nitrate reduction in maize seedlings [J]. Plant Physiology and Biochemistry, 2015, 96: 38−44. doi: 10.1016/j.plaphy.2015.07.013 [10] 刘红耀. 氮钼配施对大蒜生长发育、产量及品质的影响 [J]. 山西农业大学学报(自然科学版), 2016, 36(2):116−119,132.LIU H Y. Effect of N and Mo fertilizer of different combination on the growth and development, yield and quality of garlic [J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2016, 36(2): 116−119,132.(in Chinese) [11] 李章海, 宋泽民, 黄刚, 等. 缺钼烟田施钼对烟草光合作用和氮代谢及烟叶品质的影响 [J]. 烟草科技, 2008, 41(11):56−58,66. doi: 10.3969/j.issn.1002-0861.2008.11.013LI Z H, SONG Z M, HUANG G, et al. Effects of molybdenum applying in tobacco field on photosynthesis, nitrogen metabolism and quality of tobacco [J]. Tobacco Science & Technology, 2008, 41(11): 56−58,66.(in Chinese) doi: 10.3969/j.issn.1002-0861.2008.11.013 [12] 聂兆君, 胡承孝, 孙学成, 等. 钼对小白菜叶色、营养品质及硝酸盐含量的影响 [J]. 中国蔬菜, 2008(8):7−10.NIE Z J, HU C X, SUN X C, et al. Effects of molybdenum on leaf color, nutritional quality and nitrate contents of Chinese cabbage [J]. China Vegetables, 2008(8): 7−10.(in Chinese) [13] 张宇, 施园, 马光恕, 等. 钼营养对甜瓜果实发育的影响 [J]. 北方园艺, 2016(13):22−26.ZHANG Y, SHI Y, MA G S, et al. Effect of molybdenum nutrition for fruit development of muskmelon [J]. Northern Horticulture, 2016(13): 22−26.(in Chinese) [14] 崔国明, 张辉. Mo肥对烟叶产量品质的影响 [J]. 烟草科技, 2000, 33(3):39−41. doi: 10.3969/j.issn.1002-0861.2000.03.017CUI G M, ZHANG H. Effects of Mo fertilizer on quality and yield of flue cured tobacco [J]. Tobacco Science & Technology, 2000, 33(3): 39−41.(in Chinese) doi: 10.3969/j.issn.1002-0861.2000.03.017 [15] 杜应琼, 廖新荣, 黄志尧, 等. 硼、钼对花生氮代谢的影响 [J]. 作物学报, 2001, 27(5):612−616. doi: 10.3321/j.issn:0496-3490.2001.05.009DU Y Q, LIAO X R, HUANG Z Y, et al. Effect of boron and molybdenum on nitrogen metabolism of peanut [J]. Acta Agronomica Sinica, 2001, 27(5): 612−616.(in Chinese) doi: 10.3321/j.issn:0496-3490.2001.05.009 [16] 梅闯, 闫鹏, 艾沙江·买买提, 等. 新疆野苹果(Malus sieversii)受苹小吉丁虫危害程度与树皮厚度、径阶的关系 [J]. 中国农业科技导报, 2016, 18(4):24−30.MEI C, YAN P, AISHAJIANG M M T, et al. The relationship between bark thickness and diameter class on Agrilus mali damage in Xinjiang wild apple [J]. Journal of Agricultural Science and Technology, 2016, 18(4): 24−30.(in Chinese) [17] 时强. 浅析新疆野苹果在库尔勒地区的引种表现以及其应用[C]. 2014 年3月建筑科技与管理学术交流会, 2014. [18] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. [19] 顾曼如, 束怀瑞, 周宏伟. 苹果氮素营养研究Ⅳ. 贮藏15N的运转、分配特性 [J]. 园艺学报, 1986, 13(1):25−30.GU M R, SHU H R, ZHOU H W. A study on the nitrogen nutrition of apple trees iv-the characters of translocation and distribution of the reserved 15n [J]. Acta Horticulturae Sinica, 1986, 13(1): 25−30.(in Chinese) [20] 郜怀峰, 肖元松, 彭福田, 等. 含钼袋控复混缓释肥对土壤酶活性及桃树植株生长的影响 [J]. 水土保持学报, 2019, 33(2):220−226.GAO H F, XIAO Y S, PENG F T, et al. Effects of molybdenum bag-controlled release fertilizer on soil enzyme activity and growth of peach [J]. Journal of Soil and Water Conservation, 2019, 33(2): 220−226.(in Chinese) [21] MENDEL R R, BITTNER F. Cell biology of molybdenum [J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2006, 1763(7): 621−635. doi: 10.1016/j.bbamcr.2006.03.013 [22] 胡承孝, 王运华, 谭启玲, 等. 钼营养对冬小麦无机氮组分的影响 [J]. 华中农业大学学报, 2001, 20(2):125−129. doi: 10.3321/j.issn:1000-2421.2001.02.007HU C X, WANG Y H, TAN Q L, et al. Effect of molybdenum nutrition on inorganic nitrogen compounds of winter wheat [J]. Journal of Huazhong Agricultural, 2001, 20(2): 125−129.(in Chinese) doi: 10.3321/j.issn:1000-2421.2001.02.007 [23] YANEVA I A, HOFFMANN G W, TISCHNER R. Nitrate reductase from winter wheat leaves is activated at low temperature via protein dephosphorylation [J]. Physiologia Plantarum, 2002, 114(1): 65−72. doi: 10.1034/j.1399-3054.2002.1140110.x [24] 段晓琴. 钼锌与不同肥料配施对大白菜硝酸盐积累及品质的影响 [J]. 北方园艺, 2010(22):53−55.DUAN X Q. Effects of Mo and Zn microelement fertilizer prescribe fertilizing on nitrate accumulation and qualities in Chinese cabbage [J]. Northern Horticulture, 2010(22): 53−55.(in Chinese) [25] 李鹏程, 董合林, 刘爱忠, 等. 应用15N研究氮肥运筹对棉花氮素吸收利用及产量的影响 [J]. 植物营养与肥料学报, 2015, 21(3):590−599. doi: 10.11674/zwyf.2015.0305LI P C, DONG H L, LIU A Z, et al. Effects of nitrogen fertilizer application strategy on N uptake, utilization and yield of cotton using 15N trace technique [J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 590−599.(in Chinese) doi: 10.11674/zwyf.2015.0305 [26] 门中华, 李生秀. 钼对冬小麦硝态氮代谢的影响 [J]. 植物营养与肥料学报, 2005, 11(2):205−210. doi: 10.3321/j.issn:1008-505X.2005.02.012MEN Z H, LI S X. Effects of molybdenum on nitrate metabolism of winter wheat [J]. Plant Nutrition and Fertilizing Science, 2005, 11(2): 205−210.(in Chinese) doi: 10.3321/j.issn:1008-505X.2005.02.012 [27] 刘利, 欧志锋, 姜远茂, 等. 钼对苹果砧木平邑甜茶幼苗硝态氮吸收、转化及分配的影响 [J]. 植物营养与肥料学报, 2015, 21(3):727−733. doi: 10.11674/zwyf.2015.0320LIU L, OU Z F, JIANG Y M, et al. Effect of molybdenum on absorption, transformation and distribution of nitrate-nitrogen of apple rootstock Malus hupehensis Rehd. seedlings [J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 727−733.(in Chinese) doi: 10.11674/zwyf.2015.0320 [28] 杨洪强, 接玉玲. 苹果砧木实生苗根系个体差异研究 [J]. 山东农业大学学报, 1997, 28(4):487−491.YANG H Q, JIE Y L. Studies of individual difference in seedlings of apple rootstock [J]. Journal of Shandong Agricultural University, 1997, 28(4): 487−491.(in Chinese) [29] 谭冬梅. 干旱胁迫对新疆野苹果及平邑甜茶生理生化特性的影响 [J]. 中国农业科学, 2007, 40(5):980−986. doi: 10.3321/j.issn:0578-1752.2007.05.016TAN D M. The physiology and biochemistry of programmed Malus siversii and M. hupehensis cell death under drought stress [J]. Scientia Agricultura Sinica, 2007, 40(5): 980−986.(in Chinese) doi: 10.3321/j.issn:0578-1752.2007.05.016 [30] 郑点, 吴玉霞, 覃伟铭, 等. 新疆野苹果作为苹果砧木利用的研究进展 [J]. 中国野生植物资源, 2019, 38(2):56−59,65. doi: 10.3969/j.issn.1006-9690.2019.02.012ZHENG D, WU Y X, QIN W M, et al. Advance in research on application of Malus sieversii as rootstock [J]. Chinese Wild Plant Resources, 2019, 38(2): 56−59,65.(in Chinese) doi: 10.3969/j.issn.1006-9690.2019.02.012 [31] 徐佳宁, 刘钢, 马盼, 等. 新疆野苹果逆境响应机制研究进展 [J]. 山东农业科学, 2014, 46(8):138−141. doi: 10.3969/j.issn.1001-4942.2014.08.037XU J N, LIU G, MA P, et al. Research progress of adversity response mechanism of Malus sieversii [J]. Shandong Agricultural Sciences, 2014, 46(8): 138−141.(in Chinese) doi: 10.3969/j.issn.1001-4942.2014.08.037