Effects of Shading in Summer on Arbuscular Mycorrhizal Fungal Diversity in Plantation Soil and Tea Quality
-
摘要:
目的 分析夏季遮阴条件下茶园土壤养分、丛枝菌根真菌以及茶叶品质的变化特征,为夏季茶园合理遮阴栽培管理提供理论依据。 方法 以浙江某丘陵茶园为研究对象,测定土壤养分、AM 真菌多样性以及茶叶品质指标等。 结果 与未遮阴处理相比,茶园遮阴显著增加了土壤pH、有机质、全氮、碱解氮、全磷和有效磷含量,分别增加了15.38%、17.8%、163.6%、77.86%、45.45%和27.80%。但未遮阴处理的土壤 AM真菌多样性指数、丰度均高于遮阴处理。DGGE条带测序分析显示:未遮阴处理茶园土壤的优势AM真菌为球囊霉属(Glomus),而遮阴处理土壤球囊霉属丰度较非遮阴处理低。遮阴后,茶叶中的叶绿素总含量、氨基酸含量和咖啡碱含量分别比对照提高了46.18%,33.16%和32.30 %。茶多酚含量比对照降低了10.41 %,茶叶品质有所提高。 结论 茶园夏季遮阴能够增加土壤养分含量,提高茶叶品质,但降低了茶园土壤AM真菌多样性和丰富度指数。 Abstract:Objective Correlation between the nutrients and arbuscular mycorrhizal fungi in soil and the quality of tea produced at a plantation shaded from direct sun exposure in summer was analyzed. Method The nutrients, fungal diversity, and tea quality at a hilly tea plantation in Zhejiang Province were determined for a correlation study on the effect of summer-shading over the tea bushes. Result The shading significantly increased the pH, organic matters, total nitrogen, alkali-hydrolyzed nitrogen, total phosphorus, and available phosphorus in the plantation soil by 15.38%, 17.8%, 163.6%, 77.86%, 45.45%, and 27.80%, respectively. On the other hand, it reduced the fungal diversity index and richness. The DGGE band-sequencing analysis showed that the dominant fungi in the non-shaded control soil was Glomus, which was lower in abundance under the shading. The shading increased the contents of total chlorophyll, amino acids, and caffeine in tea leaves by 46.18%, 33.16%, and 32.30 %, respectively, but that of polyphenols declined by 10.41% over control. The tea quality was judged to be superior with the shading treatment. Conclusion Shading in summer increased soil nutrient contents and improved tea quality, but reduced the diversity and richness of arbuscular mycorrhizal fungi in the plantation soil. -
Key words:
- Tea garden /
- shading /
- arbuscular mycorrhizal fungi /
- soil nutrient /
- tea quality
-
表 1 nested-PCR 引物
Table 1. Primers used in nested-PCR
引物
Primers引物序列
Primer sequencesGeoA2 5'-CCAGTAGTCATATGCTTGTCTC-3' Geol1 5'-ACCTTGTTACGACTTTTACTTCC-3' AM1 5'-GTTTCCCGTAAGGCGCCGAA-3' NS31-GC 5'-CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGC
ACGGGGGGTTGGAGGGCAAGTCTGGTGCC-3'NS31 5′-TTGGAGGGCAAGTCTGGTGCC-3′ Glo 5'-GCCTGCTTTAAACACTCTA-3' 表 2 茶园土壤养分含量
Table 2. Contents of nutrients in plantation soil
处理
Treatment有机质含量
Organic matter content/
(g·kg−1)全氮含量
Total N content/
(g·kg−1)碱解氮含量
Hydrolyze N content/
(mg·kg−1)全磷含量
Total P content/
(g·kg−1)有效磷含量
Available P content/
(mg·kg−1)pH 遮阴 Shading 53.37±1.244 a 5.80±0.3 a 238.34±33.566 a 1.61±0.20 a 482.62±0.087 a 4.50±0.01 a CK 45.30±1.185 b 2.20±0.3 b 134.00±8.047 b 1.13±0.07 b 377.64±0.020 b 3.90±0.00 ab 同列数据后不同字母表示差异显著( P<0.05),表3同。
Data with different letters on same column indicate significant difference at P<0.05, the same as table3.表 3 茶园土壤AM真菌DGGE条带香农指数、均匀度及丰度
Table 3. Shannon index, richness, and evenness of plantation soils based on DGGE bands
处理
Treatment香农指数
Shannon-Wiener均匀度指数
Simpon’s index丰富度
Richness遮阴 Shading 2.06±0.11 b 0.99±0.01 a 8±1.20 b CK 2.93±0.24 a 0.99±0.02 a 19±1.57 a 表 4 茶园土壤AM真菌DGGE 条带序列对比
Table 4. Sequences of arbuscular mycorrhizal fungi DGGE bands in plantation soil
条带
Band No.相似菌株
Similar strain相似性
Similarity/%登录号
Accession number1 Fuscheria uluruensis 94.89 KF733753.1 2 球囊菌属真菌Glomeromycotina sp. 100.00 MG829430.1 3 未培养的球囊霉属真菌 Uncultured Glomus 99.15 JN644353.1 4 未培养的球囊霉属真菌 Uncultured Glomus 100.00 JN644353.1 5 未培养的球囊霉属真菌 Uncultured Glomus 99.15 AB695035.1 6 未培养的球囊霉属真菌 Uncultured Glomus 99.57 JN644349.1 7 未培养的球囊霉属真菌 Uncultured Glomus 100.00 GU353685.1 8 未培养的球囊霉属真菌 Uncultured Glomus 99.15 KP238340.1 9 未培养的球囊霉属真菌 Uncultured Glomus 99.15 GQ140612.1 10 未培养的球囊霉属真菌 Uncultured Glomus 99.57 KP238340.1 11 未培养的球囊霉属真菌 Uncultured Glomus 99.15 JN644353.1 12 球囊菌亚门真菌 Glomeromycotina sp. 100.00 MG829430.1 13 未培养的球囊霉属真菌 Uncultured Glomus 100.00 AB695035.1 14 未培养的球囊霉属真菌 Uncultured Glomus 98.29 DQ510942.1 15 未培养的球囊霉属真菌 Uncultured Glomus 99.57 KP238340.1 16 未培养的球囊霉属真菌 Uncultured Glomus 96.58 KU359437.1 17 被孢霉菌属真菌 Mortierella sp. 100.00 MK123406.1 18 被孢霉菌属真菌 Mortierella sp. 99.57 MK123406.1 19 未培养的球囊霉门真菌 Uncultured Glomeromycota 100.00 KF745197.1 20 未培养的真菌 Uncultured fungus 99.57 KU359465.1 21 被孢霉菌属真菌 Mortierella sp. 99.57 MK123406.1 22 未培养的真菌 Uncultured fungus 100.00 KU359465.1 23 水生子囊菌 Distoseptispora aquatica strain 99.57 MK828314.1 24 淡红丛枝瑚菌 Ramaria rubella 96.57 AY707095.1 25 未培养近微孢虫菌 Uncultured Paramicrosporidium 100.00 KP137393.1 表 5 不同遮阴处理下茶叶主要内含物质含量
Table 5. Effect of shading on chemical composition of tea
处理
TreatmentCK 遮阴
Shading叶绿素a Chlorophyll a/(mg·g−1) 2.06±0.24 b 2.79±0.01 a 叶绿素b Chlorophyll b/(mg·g−1) 0.69±0.07 b 1.23±0.06 a 叶绿素总量 Total Chlorophyll/(mg·g−1) 2.75± 0.02 b 4.02±0.07 a 总氨基酸 Total amino acid/% 1.96±0.05 b 2.61±0.05 a 茶多酚 Tea polyphenols/% 14.32±0.01 a 12.83±0.03 b 酚氨比
The ratios of tea poly phenol and amino acid7.31±0.02 a 4.92±0.03 b 咖啡碱 Caffeine/% 1.61±0.01 b 2.13±0.0 a 同行不同字母表示在0.05水平上的差异显著性。
Data with different letters on same column indicate significant difference at P<0.05. -
[1] SHARMA D, KAYANG H. Effects of arbuscular mycorrhizal fungi (amf) on Camellia sinensis (L.) o. kuntze under greenhouse conditions [J]. Journal of Experimental Biology and Agricultural Sciences, 2017, 5(2): 235−241. doi: 10.18006/2017.5(2).235.241 [2] 秦志敏, 付晓青, 肖润林, 等. 不同颜色遮阳网遮光对丘陵茶园夏秋茶和春茶产量及主要生化成分的影响 [J]. 生态学报, 2011, 31(16):4509−4516.QIN Z M, FU X Q, XIAO R L, et al. Effects of colour shading on the yield and main biochemical components of summer-autumn tea and spring tea in a hilly tea field [J]. Acta Ecologica Sinica, 2011, 31(16): 4509−4516.(in Chinese) [3] 田月月, 张丽霞, 张正群, 等. 夏秋季遮光对山东黄金芽茶树生理生化特性的影响 [J]. 应用生态学报, 2017, 28(3):789−796.TIAN Y Y, ZHANG L X, ZHANG Z Q, et al. Effects of shading in summer and autumn on physiological and biochemical characteristics of ‘Huangjinya' in Shandong Province, China [J]. Chinese Journal of Applied Ecology, 2017, 28(3): 789−796.(in Chinese) [4] WANG Y S, GAO L P, SHAN Y, et al. Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L. ) O. Kuntze) [J]. Scientia Horticulturae, 2012, 141: 7−16. doi: 10.1016/j.scienta.2012.04.013 [5] KU K M, CHOI J N, KIM J, et al. Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.) [J]. Journal of Agricultural and Food Chemistry, 2010, 58(1): 418−426. doi: 10.1021/jf902929h [6] 舒华, 王盈峰, 张士康, 等. 遮荫对茶树新梢叶绿素及其生物合成前体的影响 [J]. 茶叶科学, 2012, 32(2):115−121. doi: 10.3969/j.issn.1000-369X.2012.02.004SHU H, WANG Y F, ZHANG S K, et al. Effect of light-shading on accumulation of chlorophylls and their precursors in tea shoots [J]. Journal of Tea Science, 2012, 32(2): 115−121.(in Chinese) doi: 10.3969/j.issn.1000-369X.2012.02.004 [7] UJIHARA T, HAYASHI N, IKEZAKI H. Objective evaluation of astringent and umami taste intensities of matcha using a taste sensor system [J]. Food Science and Technology Research, 2013, 19(6): 1099−1105. doi: 10.3136/fstr.19.1099 [8] SHAO Y D, ZHANG D J, HU X C, et al. Mycorrhiza-induced changes in root growth and nutrient absorption of tea plants [J]. Plant, Soil and Environment, 2018, 64(No.6): 283−289. doi: 10.17221/126/2018-PSE [9] MICKAN B S, ABBOTT L K, STEFANOVA K, et al. Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil [J]. Mycorrhiza, 2016, 26(6): 565−574. doi: 10.1007/s00572-016-0693-4 [10] SÄLE V, AGUILERA P, LACZKO E, et al. Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi [J]. Soil Biology and Biochemistry, 2015, 84: 38−52. doi: 10.1016/j.soilbio.2015.02.005 [11] 赵艳, 胡桂萍, 宋凤琴, 等. 茶园根际土壤细菌群落结构及多样性 [J]. 生物安全学报, 2013, 22(3):187−195. doi: 10.3969/j.issn.2095-1787.2013.03.007ZHAO Y, HU G P, SONG F Q, et al. Structure and diversity of bacterial communities in the rhizosphere soil of tea plantations [J]. Journal of Biosafety, 2013, 22(3): 187−195.(in Chinese) doi: 10.3969/j.issn.2095-1787.2013.03.007 [12] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [13] 贺学礼, 耿晓进, 赵丽莉, 等. 金银花根围AM真菌多样性的季节性变化研究 [J]. 生态环境学报, 2013, 22(1):90−94. doi: 10.3969/j.issn.1674-5906.2013.01.017HE X L, GENG X J, ZHAO L L, et al. Seasonal variation of AM fungal diversity in the rhizosphere of Lonicera japonica [J]. Ecology and Environmental Sciences, 2013, 22(1): 90−94.(in Chinese) doi: 10.3969/j.issn.1674-5906.2013.01.017 [14] 向芬, 李维, 刘红艳, 等. 茶树叶绿素测定方法的比较研究 [J]. 茶叶通讯, 2016, 43(4):37−40. doi: 10.3969/j.issn.1009-525X.2016.04.010XIANG F, LI W, LIU H Y, et al. Comparisonon methods of chlorophyll extraction in Camellia sinensis [J]. Journal of Tea Communication, 2016, 43(4): 37−40.(in Chinese) doi: 10.3969/j.issn.1009-525X.2016.04.010 [15] HU D M, LIU F, CAI L. Biodiversity of aquatic fungi in China [J]. Mycology, 2013, 4(3): 125−168. doi: 10.1080/21501203.2013.835752 [16] 霍颖, 张杰, 王美超, 等. 梨园行间种草对土壤有机质和矿质元素变化及相互关系的影响 [J]. 中国农业科学, 2011, 44(7):1415−1424. doi: 10.3864/j.issn.0578-1752.2011.07.014HUO Y, ZHANG J, WANG M C, et al. Effects of inter-row planting grasses on variations and relationships of soil organic matter and soil nutrients in pear orchard [J]. Scientia Agricultura Sinica, 2011, 44(7): 1415−1424.(in Chinese) doi: 10.3864/j.issn.0578-1752.2011.07.014 [17] 段建真, 郭素英. 遮荫与覆盖对茶园生态环境的影响 [J]. 安徽农学院学报, 1992, 19(3):189−195.DUAN J Z, GUO S Y. Effect of shading and couering on the ecological environment of tea garden [J]. Journal of Anhui Agricultural University, 1992, 19(3): 189−195.(in Chinese) [18] 付晓青, 陈佩, 秦志敏, 等. 遮荫处理对丘陵茶园生态环境及茶树气体交换的影响 [J]. 中国农学通报, 2011, 27(8):40−46.FU X Q, CHEN P, QIN Z M, et al. Effects of shading on eco-environment and leaf gas exchange of tea in hilly tea plantation [J]. Chinese Agricultural Science Bulletin, 2011, 27(8): 40−46.(in Chinese) [19] 汪吉东, 戚冰洁, 张永春, 等. 长期施肥对砂壤质石灰性潮土土壤酸碱缓冲体系的影响 [J]. 应用生态学报, 2012, 23(4):1031−1036.WANG J D, QI B J, ZHANG Y C, et al. Effects of long-term fertilization on pH buffer system of sandy loam calcareous fluvor-aquic soil [J]. Chinese Journal of Applied Ecology, 2012, 23(4): 1031−1036.(in Chinese) [20] 苏有健, 王烨军, 张永利, 等. 不同植茶年限茶园土壤pH缓冲容量 [J]. 应用生态学报, 2014, 25(10):2914−2918.SU Y J, WANG Y J, ZHANG Y L, et al. Soil pH buffer capacity of tea garden with different planting years [J]. Chinese Journal of Applied Ecology, 2014, 25(10): 2914−2918.(in Chinese) [21] 樊战辉, 唐小军, 郑丹, 等. 茶园土壤酸化成因及改良措施研究和展望 [J]. 茶叶科学, 2020, 40(1):15−25. doi: 10.3969/j.issn.1000-369X.2020.01.002FAN Z H, TANG X J, ZHENG D, et al. Study and prospect of soil acidification causes and improvement measures in tea plantation [J]. Journal of Tea Science, 2020, 40(1): 15−25.(in Chinese) doi: 10.3969/j.issn.1000-369X.2020.01.002 [22] 李昌娟, 杨文浩, 周碧青, 等. 生物炭基肥对酸化茶园土壤养分及茶叶产质量的影响 [J]. 土壤通报, 2021, 52(2):387−397.LI C J, YANG W H, ZHOU B Q, et al. Effects of biochar based fertilizer on soil nutrients, tea output and quality in an acidified tea field [J]. Chinese Journal of Soil Science, 2021, 52(2): 387−397.(in Chinese) [23] 石国玺. 高寒草甸退化指示物种黄帚橐吾的菌根生态学研究[D]. 兰州: 兰州大学, 2014.SHI G X. Arbuscular mycorrhizal ecology of an indicator species of vegetation degragation, Ligularia virgaurea, in alpine meadow ecosystems[D]. Lanzhou: Lanzhou University, 2014. (in Chinese) [24] SUN M F, YUAN D, HU X C, et al. Effects of mycorrhizal fungi on plant growth, nutrient absorption and phytohormones levels in tea under shading condition [J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2020, 48(4): 2006−2020. doi: 10.15835/nbha48412082 [25] FENG L, GAO M J, HOU R Y, et al. Determination of quality constituents in the young leaves of albino tea cultivars [J]. Food Chemistry, 2014, 155: 98−104. doi: 10.1016/j.foodchem.2014.01.044 [26] ZHANG Q F, LIU M Y, MUMM R, et al. Metabolomics reveals the within-plant spatial effects of shading on tea plants [J]. Tree Physiology, 2020, 41(2): 317−330. [27] 秦志敏, John Tanui, 冯卫英, 等. 遮光对丘陵茶园茶叶产量指标和内含生化成分的影响 [J]. 南京农业大学学报, 2011, 34(5):47−52.QIN Z M, TANUI J, FENG W Y, et al. Effects of shading on yield index and biochemical components of tea in hilly tea plantation [J]. Journal of Nanjing Agricultural University, 2011, 34(5): 47−52.(in Chinese)