• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稻瘟病菌无毒效应因子Avr-PikD与水稻蛋白OsDjA9的互作鉴定

郭嘉媛 洪永河 黄健强 吴亦灵 王宗华 陈松彪 陈晓峰

郭嘉媛,洪永河,黄健强,等. 稻瘟病菌无毒效应因子Avr-PikD与水稻蛋白OsDjA9的互作鉴定 [J]. 福建农业学报,2022,37(5):668−674 doi: 10.19303/j.issn.1008-0384.2022.005.015
引用本文: 郭嘉媛,洪永河,黄健强,等. 稻瘟病菌无毒效应因子Avr-PikD与水稻蛋白OsDjA9的互作鉴定 [J]. 福建农业学报,2022,37(5):668−674 doi: 10.19303/j.issn.1008-0384.2022.005.015
GUO J Y, HONG Y H, HUANG J Q, et al. Interaction Identification between Magnaporthe oryzae Avirulence Effector Avr-PikD and Rice Protein OsDjA9 [J]. Fujian Journal of Agricultural Sciences,2022,37(5):668−674 doi: 10.19303/j.issn.1008-0384.2022.005.015
Citation: GUO J Y, HONG Y H, HUANG J Q, et al. Interaction Identification between Magnaporthe oryzae Avirulence Effector Avr-PikD and Rice Protein OsDjA9 [J]. Fujian Journal of Agricultural Sciences,2022,37(5):668−674 doi: 10.19303/j.issn.1008-0384.2022.005.015

稻瘟病菌无毒效应因子Avr-PikD与水稻蛋白OsDjA9的互作鉴定

doi: 10.19303/j.issn.1008-0384.2022.005.015
基金项目: 福建省自然科学基金项目(2019J01766、2020J01853);闽江学院科研计划项目(MYK19026)
详细信息
    作者简介:

    郭嘉媛(1996−),女,硕士研究生,主要从事病原真菌与植物互作机制研究(E-mail:a18759762633@163.com

    通讯作者:

    陈松彪(1973−),男,博士,研究员,主要从事农业生物技术、海洋生物技术研究(E-mail:sbchen@fjage.org

    陈晓峰(1984−),男,博士,副教授,主要从事病原真菌与植物互作机制研究(E-mail:ChenXF@mju.edu.cn

  • 中图分类号: S 435

Interaction Identification between Magnaporthe oryzae Avirulence Effector Avr-PikD and Rice Protein OsDjA9

  • 摘要:   目的  对从水稻cDNA文库中筛选出的一个候选互作蛋白OsDjA9与Avr-PikD的互作关系进行鉴定,以期获得稻瘟病菌无毒效应因子Avr-PikD的水稻靶标。  方法  通过酵母双杂交、pull-down、Co-IP、荧光素酶互补成像试验及水稻原生质体中的共定位分析来验证Avr-PikD与OsDjA9的互作关系,并进一步借助酵母双杂交鉴定OsDjA9中参与互作的关键结构域。  结果  Avr-PikD在体外及体内条件下均能与OsDjA9发生相互作用,且OsDjA9所含DnaJ结构域是其与Avr-PikD互作所必需的。  结论  在稻瘟病菌侵染水稻的过程中,水稻OsDjA9蛋白是稻瘟病菌无毒效应因子Avr-PikD的一个作用靶标。
  • 图  1  酵母双杂交验证Avr-PikD与OsDjA9的互作关系

    Figure  1.  Interaction between Avr-PikD and OsDjA9 verified by yeast two-hybrid assay

    图  2  Pull-down验证Avr-PikD与OsDjA9的互作关系

    Figure  2.  Interaction between Avr-PikD and OsDjA9 verified by pull-down assay

    图  3  Avr-PikD与OsDjA9在水稻原生质体中的共定位分析

    A,OsDjA9-GFP荧光图;B,AvrPikDNS-RFP荧光图;C,明场图;D,叠加图。

    Figure  3.  Co-localization analysis between Avr-PikD and OsDjA9 in rice protoplasts

    A, fluorescent image of OsDjA9-GFP; B, fluorescent image of AvrPikDNS-RFP; C, brightfield image; D, merged image.

    图  4  Co-IP验证Avr-PikD与OsDjA9的互作关系

    Figure  4.  Interaction between Avr-PikD and OsDjA9 verified by Co-IP assay

    图  5  荧光素酶互补成像试验验证Avr-PikD与OsDjA9的互作关系

    1,阴性对照组:pCAMBIA1300-NLuc与pCAMBIA1300-Cluc;2,阴性对照组:NLuc-AvrPikDNS与pCAMBIA1300-CLuc;3,阴性对照组:pCAMBIA1300-NLuc与CLuc-OsDjA9;4,试验组:NLuc-AvrPikDNS与CLuc-OsDjA9;5,阳性对照组:NLuc-AvrPiz-t与CLuc-APIP5。

    Figure  5.  Interaction between Avr-PikD and OsDjA9 verified by LCI assay

    1, negative control: pCAMBIA1300-NLuc+pCAMBIA1300-Cluc; 2, negative control: NLuc-AvrPikDNS+pCAMBIA1300-CLuc; 3, negative control: pCAMBIA1300-NLuc+CLuc-OsDjA9; 4, test group: NLuc-AvrPikDNS+CLuc-OsDjA9; 5, positive control: NLuc-AvrPiz-t+CLuc-APIP5.

    图  6  酵母双杂交验证Avr-PikD与OsDjA9不同结构域之间的互作关系

    A,OsDjA9所含结构域示意图;B,酵母双杂交检测结果。

    Figure  6.  Interactions between AvrPikD and different domains of OsDjA9 identified by yeast two-hybrid assay

    A, schematic diagram of domains contained in OsDjA9; B, interaction identified by yeast two-hybrid assay.

    表  1  目前已知的稻瘟病菌无毒效应因子的水稻靶标

    Table  1.   Currently known rice targets for AVR effectors of M. oryzae

    无毒效应
    因子
    Avirulence
    effector
    水稻靶标
    Rice target
    水稻靶标的功能注释
    Functional annotation
    of rice target
    参考文献
    Reference
    AvrPiz-t APIP6 RING型E3泛素连接酶
    RING-type E3 ligase
    [6]
    APIP10 RING型E3泛素连接酶
    RING-type E3 ligase
    [7]
    APIP5 bZIP型转录因子
    bZIP-type transcription factor
    [8]
    APIP12 核孔蛋白Nup98同源蛋白
    Homolog of nucleoporin 98
    (Nup98)
    [9]
    APIP7 (OsAKT1) K+通道蛋白
    Potassium channel protein
    [10]
    APIP4 Bowman-Birk型胰蛋白酶抑制剂
    Bowman-Birk-type trypsin inhibitor
    [11]
    Avr-Pii OsExo70-F2/F3 胞吐复合物亚基
    Exocyst complex subunit
    [12]
    Os-NADP-ME2-3 NADP-苹果酸酶
    NADP-malic enzyme
    [13]
    Avr-Pita OsCOX11 细胞色素c氧化酶组装蛋白
    Cytochrome c oxidase assembly protein
    [14]
    下载: 导出CSV

    表  2  本研究所用引物序列

    Table  2.   Sequences of primers used in this study

    引物名称
    Primer name
    引物序列
    Primer sequence
    Y2H-F/RTCCCCCCGGGTATGCGGCTCCCCGGCGACGC/CCGCTCGAGCTATCCCGATGCTCCTGCTGCCTTT
    GST-F/RCGGGATCCATGGAAACGGGCAACAAA/
    CGGAATTCTTAAAAGCCGGGCCTTTT
    MBP-F/RGCTCTAGAATGCGGCTCCCCGGCGACGC/
    ACGCGTCGACCTATCCCGATGCTCCTGCTGCCTTT
    GFP-F/RCGGGATCCATGCGGCTCCCCGGCGAC/GGGGTACCTCCCGATGCTCCTGCTGC
    RFP-F/RCGGGATCCATGGAAACGGGCAACAAATAT/
    GGGGTACCAAAGCCGGGCCTTTTTTTCCC
    NLuc-F/RCGAGCTCGGTACCCGGGATCCATGGAAACGGGCAACAAATATATA/
    CGCGTACGAGATCTGGTCGACAAAGCCGGGCCTTTTTTTC
    CLuc-F/RGGCGGTACCCGGGATCCAATGCGGCTCCCCGGCGACGCT/
    GAAAGCTCTGCAGGTCGACCTATCCCGATGCTCCTGCTGC
    DnaJ-F/RGGAATTCCATATGCACGGGACGAGGCCG/
    CGGGATCCCTAAAGTGCAACCTTGGC
    ZF_CR-F/RGGAATTCCATATGGAAATATCATTTATGGAAGC/
    CGGGATCCCTAATCCGTACCAGGCAC
    下载: 导出CSV
  • [1] TALBOT N J. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea [J]. Annual Review of Microbiology, 2003, 57: 177−202. doi: 10.1146/annurev.micro.57.030502.090957
    [2] SKAMNIOTI P, GURR S J. Against the grain: Safeguarding rice from rice blast disease [J]. Trends in Biotechnology, 2009, 27(3): 141−150. doi: 10.1016/j.tibtech.2008.12.002
    [3] MENTLAK T A, KOMBRINK A, SHINYA T, et al. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease [J]. The Plant Cell, 2012, 24(1): 322−335. doi: 10.1105/tpc.111.092957
    [4] IRIEDA H, INOUE Y, MORI M, et al. Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases [J]. PNAS, 2019, 116(2): 496−505. doi: 10.1073/pnas.1807297116
    [5] WANG B H, EBBOLE D J, WANG Z H. The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes [J]. Journal of Integrative Agriculture, 2017, 16(12): 2746−2760. doi: 10.1016/S2095-3119(17)61746-5
    [6] PARK C H, CHEN S B, SHIRSEKAR G, et al. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice [J]. The Plant Cell, 2012, 24(11): 4748−4762. doi: 10.1105/tpc.112.105429
    [7] PARK C H, SHIRSEKAR G, BELLIZZI M, et al. The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice [J]. PLoS Pathogens, 2016, 12(3): e1005529. doi: 10.1371/journal.ppat.1005529
    [8] WANG R Y, NING Y S, SHI X T, et al. Immunity to rice blast disease by suppression of effector-triggered necrosis [J]. Current Biology, 2016, 26(18): 2399−2411. doi: 10.1016/j.cub.2016.06.072
    [9] TANG M Z, NING Y S, SHU X L, et al. The Nup98 homolog APIP12 targeted by the effector AvrPiz-t is involved in rice basal resistance against Magnaporthe oryzae [J]. Rice (N Y), 2017, 10(1): 5−15. doi: 10.1186/s12284-017-0144-7
    [10] SHI X T, LONG Y, HE F, et al. The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel [J]. PLoS Pathogens, 2018, 14(1): e1006878. doi: 10.1371/journal.ppat.1006878
    [11] ZHANG C Y, FANG H, SHI X T, et al. A fungal effector and a rice NLR protein have antagonistic effects on a Bowman-Birk trypsin inhibitor [J]. Plant Biotechnology Journal, 2020, 18(11): 2354−2363. doi: 10.1111/pbi.13400
    [12] FUJISAKI K, ABE Y, ITO A, et al. Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity [J]. The Plant Journal, 2015, 83(5): 875−887. doi: 10.1111/tpj.12934
    [13] SINGH R, DANGOL S, CHEN Y F, et al. Magnaporthe oryzae effector AVR-pii helps to establish compatibility by inhibition of the rice NADP-malic enzyme resulting in disruption of oxidative burst and host innate immunity [J]. Molecules and Cells, 2016, 39(5): 426−438. doi: 10.14348/molcells.2016.0094
    [14] HAN J L, WANG X Y, WANG F P, et al. The fungal effector avr-pita suppresses innate immunity by increasing COX activity in rice mitochondria [J]. Rice (New York, N Y ), 2021, 14(1): 12.
    [15] ZHAI K R, LIANG D, LI H L, et al. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity [J]. Nature, 2022, 601(7892): 245−251. doi: 10.1038/s41586-021-04219-2
    [16] KANZAKI H, YOSHIDA K, SAITOH H, et al. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions [J]. The Plant Journal, 2012, 72(6): 894−907. doi: 10.1111/j.1365-313X.2012.05110.x
    [17] WU W H, WANG L, ZHANG S, et al. Stepwise arms race between AvrPik and Pik alleles in the rice blast pathosystem [J]. Molecular Plant Microbe Interactions, 2014, 27(8): 759−769. doi: 10.1094/MPMI-02-14-0046-R
    [18] ZHANG Y, SU J B, DUAN S, et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes [J]. Plant Methods, 2011, 7(1): 30. doi: 10.1186/1746-4811-7-30
    [19] WANG G D, CAI G H, KONG F Y, et al. Overexpression of tomato chloroplast-targeted dnaj protein enhances tolerance to drought stress and resistance to Pseudomonas solanacearum in transgenic tobacco [J]. Plant Physiology and Biochemistry, 2014, 82: 95−104. doi: 10.1016/j.plaphy.2014.05.011
    [20] ZHONG X H, YANG J X, SHI Y L, et al. The DnaJ protein OsDjA6 negatively regulates rice innate immunity to the blast fungus Magnaporthe oryzae [J]. Molecular Plant Pathology, 2018, 19(3): 607−614. doi: 10.1111/mpp.12546
    [21] FENG H J, LI C, ZHOU J L, et al. A cotton WAKL protein interacted with a DnaJ protein and was involved in defense against Verticillium dahliae [J]. International Journal of Biological Macromolecules, 2021, 167: 633−643. doi: 10.1016/j.ijbiomac.2020.11.191
    [22] CHEN S B, SONGKUMARN P, VENU R C, et al. Identification and characterization of in planta-expressed secreted effector proteins from Magnaporthe oryzae that induce cell death in rice [J]. Molecular Plant Microbe Interactions, 2013, 26(2): 191−202. doi: 10.1094/MPMI-05-12-0117-R
    [23] XU G J, ZHONG X H, SHI Y L, et al. A fungal effector targets a heat shock-dynamin protein complex to modulate mitochondrial dynamics and reduce plant immunity [J]. Science Advances, 2020, 6(48): eabb7719. doi: 10.1126/sciadv.abb7719
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1093
  • HTML全文浏览量:  295
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 录用日期:  2022-03-31
  • 修回日期:  2022-04-11
  • 网络出版日期:  2022-05-21
  • 刊出日期:  2022-05-28

目录

    /

    返回文章
    返回