Effects of Planting Varieties of Arundo Grass on Soil Enzyme Activities and Microbial Community
-
摘要:
目的 分析种植芦竹属菌草对土壤养分、酶活及微生物群落结构的影响,探讨种植芦竹属菌草对土壤的改良作用。 方法 对种植芦竹属6个品种菌草前后土壤养分、酶活进行检测,采用Illumina-MiSeq高通量测序技术分析微生物多样性和群落结构。 结果 芦竹属6个不同品种菌草种植后,与未种植芦竹的空白对照地相比,种植绿洲1号、绿洲9号土壤中速效磷(8.20 mg·kg−1、8.72 mg·kg−1)、速效氮(22.63 mg·kg−1、18.20 mg·kg−1)、有机碳(13.83 g·kg−1、10.48 g·kg−1)和总氮(0.84 g·kg−1、0.71 g·kg−1)的含量均显著高于对照组(2.54 mg·kg−1、14.47 mg·kg−1、5.27g·kg−1、0.38 g·kg−1)的含量(P<0.05);且种植芦竹属菌草后的土壤酶活性均有不同程度的升高,其中绿洲1号和绿洲9号土壤脲酶活性显著高于对照组(P<0.05)。Pearson相关性分析结果显示:脲酶活性与土壤速效磷、速效氮、有机碳和全氮等均有显著的相关性(P<0.01),蔗糖酶与几种土壤养分无显著的相关性。种植芦竹后,土壤细菌和真菌多样性评估指数均高于对照组,其中绿洲1号和绿洲3号的Ace指数、Chao指数和Shannon指数均显著高于对照组(P<0.05);Pearson相关性分析结果显示:微生物多样性细菌Ace指数和Chao指数与蔗糖酶活性、酸性磷酸酶活性呈极显著的正相关(P<0.01),微生物多样性真菌指数Shannon指数与ACP活性呈显著的正相关(P<0.05)。 结论 在贫瘠的土壤条件下种植芦竹属菌草,能够起到改良土壤,提高土壤酶活性和土壤微生物多样性的积极作用,为种植芦竹属菌草(尤其是绿洲1号、绿洲3号和绿洲9号)的推广提供数据支撑和理论依据。 Abstract:Objective Effects of planting different species of Arundo on the nutrients, enzyme activities, and microbial community of the soil were investigated. Method Nutrients and enzyme activities in the soil were analyzed before and after on which different varieties of arundo grass were planted. Pearson analysis was applied to corelate the factors. Diversity of microbial community in soil was determined by illumina miseq high-throughput sequencing. Results Six different Arundo species were planted in a pot experiment. In the soils that lvzhou 1 and lvzhou 9 were planted, the contents of available phosphorus (8.20 and 8.72 mg·kg−1, respectively), available nitrogen (22.63 and 8.20 mg·kg−1, respectively), organic carbon (13.83 and 10.48 g·kg−1, respectively), and total nitrogen (0.84 and 0.71 g·kg−1, respectively) were significantly higher than those in control (2.54 mg·kg−1, 14.47 mg·kg−1, 5.72 g·kg−1, and 0.38 g·kg−1, respectively) (P<0.05). The urease activity was significantly higher than that of control (P<0.05). The activities of urease significantly correlated with the available phosphorus, available nitrogen, organic carbon, and total nitrogen in the soil (P<0.01) but not on the invertase (P>0.05). The microbial diversity indices of the soil were higher after the grass planting than before, while the Ace, Chao, and Shannon indices of the soil planted with lvzhou 1 or lvzhou 3 significantly higher than those of control (P<0.05). The bacterial Ace and Chao indices all positively correlated with the invertase and ACP activities (P<0.01), the Shannon index on fungi showed with the ACP activity (P<0.05). Conclusion Planting arundo grasses, especially lvzhou 1 or lvzhou 3, on an infertile land could conceivably improve the soil quality due to the enrichments brought about through increased enzyme activity and microbial diversity. -
Key words:
- arundo grass /
- soil nutrient /
- soil enzyme activity /
- soil microbial community
-
表 1 种植芦竹属不同菌草对土壤主要养分的影响
Table 1. Nutrients in soil as affected by planting of different arundo grasses
处理 Treatment pH 速效磷 AP/(mg·kg−1) 速效氮 AN/(mg·kg−1) 有机碳 SOC/(g·kg−1) 全氮 TN/(g·kg−1) CK 5.82±0.13 b 2.54±0.20 c 14.47±0.31 d 5.27±0.11 e 0.38±0.016 f Lz1 5.57±0.25 bc 8.20±0.76 a 22.63±0.64 a 13.83±0.44 a 0.84±0.0085 a Lz2 5.60±0.22 bc 4.63±0.44 b 15.52±0.53 cd 8.99±0.30 c 0.56±0.044 d Lz3 5.43±0.12 cd 3.59±0.12 bc 19.13±0.42 b 9.98±0.32 b 0.64±0.015 c Lz5 6.05±0.11 ab 3.82±0.10 bc 16.10±0.61 c 8.68±0.28 c 0.50±0.012 e Lz6 6.21±0.13 a 4.67±0.62 b 14.12±0.40 d 7.25±0.13 d 0.50±0.022 e Lz9 5.80±0.21 b 8.72±0.37 a 18.20±0.61 b 10.48±0.32 b 0.71±0.0098 b 同列数据后不同小写字母表示处理间的差异达显著水平(P<0.05)。
Data with different lowercase letters on same column indicate significant differences between treatments (P<0.05).表 2 土壤特性与土壤酶活的Pearson相关性
Table 2. Pearson correlation between characteristics and enzyme activity of soil
项目 Items pH 速效磷 AP 速效氮 AN 有机碳 SOC 全氮 TN 脲酶 URE −0.327 0.882** 0.690** 0.807** 0.910** 过氧化氢酶 CAT 0.426* −0.715** −0.622** −0.638** −0.784** 蔗糖酶 INV 0.064 −0.088 0.029 0.132 −0.070 酸性磷酸酶 ACP −0.181 0.197 0.464* 0.620** 0.506* *表示在0.05水平上差异显著,**表示在0.01水平上差异极显著。表4同。
* represents significant at the 0.05 probability level, ** represents significant at the 0.01 probability level. Same for Table 4.表 3 不同土壤样品微生物丰度和多样性
Table 3. Microbial abundance and diversity of soil samples
评估指数
Assessment
indexCK Lz1 Lz2 Lz3 Lz5 Lz6 Lz9 细菌
BacteriaAce 3140.06±66.27 d 3680.22±78.84 ab 3686.17±46.09 a 3521.67±23.83 c 3814.67±33.64 a 3473.21±46.64 c 3526.08±41.77 b Shannon 9.36±0.13 b 9.77±0.072 a 9.72±0.028 a 9.58±0.060 ab 10.07±0.015 a 9.53±0.017 ab 9.56±0.061 ab Chao 3421.69±69.59 d 4139.99±57.67 a 4165.19±45.92 a 4062.60±49.83 ab 42225.80±24.29 a 3877.68±44.56 c 3937.11±63.52 bc Coverage 0.96 a 0.96 a 0.96 a 0.96 a 0.96 a 0.96 a 0.96 a Simpson 1.00 a 1.00 a 1.00 a 1.00 a 1.00 a 1.00 a 1.00 a 真菌
FungiAce 1066.61±36.88 cd 1423.82±80.32 ab 1268.97±21.65 b 1506.86±55.88 a 1201.24±66.81 c 1152.33±21.45 cd 1169.85±37.85 cd Shannon 4.50±0.0057 c 6.63±0.14 a 6.70±0.11 a 6.14±0.095 b 6.86±0.11 a 6.87±0.12 a 6.29±0.13 b Chao 1098.08±40.35 cd 1584.29±49.62 a 1454.06±51.65 ab 1619.30±60.94 a 1324.21±54.43 bc 1098.20±17.18 cd 1247.04±63.83 bc Coverage 0.99 a 0.99 a 0.99 a 0.99 a 0.98 a 0.99 a 0.99 a Simpson 0.96 a 0.97 a 0.98 a 0.95 a 0.97 a 0.75 b 0.96 a 同行数据后不同小写字母表示处理间显著性差异(P<0.05)。
Data with different lowercase letters on same row indicated significant differences between treatments (P<0.05).表 4 微生物多样性指数与土壤酶活的相关关系
Table 4. Correlation between microbial diversity index and enzyme activity of soil
项目
Items评估指数
Assessment index脲酶
URE过氧化
氢酶
CAT蔗糖酶
INV酸性磷
酸酶
ACP细菌 Bacteria Ace 0.325 −0.193 0.641** 0.597** Shannon 0.026 0.080 0.869** 0.530* Chao 0.404 −0.314 0.554** 0.638** Coverage — — — — 真菌 Fungus Ace 0.376 −0.415 0.070 0.597** Shannon 0.421 −0.270 0.368 0.438* Chao 0.373 −0.401 0.119 0.632* Coverage −0.169 0.279 0.142 −0.194 表 5 土壤微生物优势门类与土壤酶活之间的相关关系
Table 5. Correlations among dominant microbial phyla, nutrients, and enzyme activity in soil
项目
Items种类
PhylumURE CAT INV ACP 细菌 Bacteria 变形菌门 Proteobacteria 0.538** −0.500* 0.008 0.010 酸杆菌门 Acidobacteria −0.126 0.171 0.087 0.098 绿弯菌门 Chloroflexi −0.730** 0.585** −0.236 −0.408 放线菌门 Actinobacteria 0.507* −0.464* −0.069 0.456* 拟杆菌门 Bacteroidetes 0.614** −0.478* 0.101 0.174 黏胶球形菌 Latescibacteria −0.429 0.341 0.079 −0.258 疣微菌门 Verrucomicrobia 0.306 −0.239 −0.496* −0.132 芽单胞菌门 Gemmatimonadetes −0.449* 0.383 0.531* −0.041 浮霉菌门 Planctomycetes 0.109 −0.048 −0.333 −0.259 硝化螺旋菌门 Nitrospirae −0.692** 0.680** 0.679** −0.045 梭杆菌门 Saccharibacteria 0.811** −0.668** −0.174 0.430 蓝细菌门 Cyanobacteria 0.374 −0.195 0.041 0.449* 迷踪菌门 Elusimicrobia −0.329 0.315 −0.259 −0.239 俭菌总门 Parcubacteria −0.432 0.382 −0.309 −0.603** 厚壁菌门 Firmicutes 0.715** −0.494* −0.243 0.291 真菌
Fungus子囊菌门 Ascomycota 0.555** −0.696** 0.185 0.396 担子菌门 Basidiomycota 0.066 0.009 −0.206 −0.088 未鉴定 unidentified 0.265 −0.300 0.145 0.165 被孢 霉门Mortierellomycota −0.755** 0.667** −0.014 −0.310 球囊菌门 Glomeromycota −0.836** 0.717** 0.334 −0.211 壶菌门 Chytridiomycota −0.030 0.095 0.103 −0.067 梳霉门 Kickxellomycota −0.833** 0.738** 0.338 −0.313 罗兹菌门 Rozellomycota 0.353 −0.186 −0.285 0.057 Calcarisporiellomycota −0.682** 0.602** −0.098 −0.394 -
[1] GYANESHWAR P, KUMAR G N, PAREKH L J, et al. Role of soil microorganisms in improving P nutrition of plants [J]. Plant and Soil, 2002, 245(1): 133−143. [2] LYNCH J M, BENEDETTI A, INSAM H, et al. Microbial diversity in soil: Ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms [J]. Biology and Fertility of Soils, 2004, 40(6): 363−385. doi: 10.1007/s00374-004-0784-9 [3] WELBAUM G E, STURZ A V, DONG Z M, et al. Managing soil microorganisms to improve productivity of agro-ecosystems [J]. Critical Reviews in Plant Sciences, 2004, 23(2): 175−193. doi: 10.1080/07352680490433295 [4] 罗安程, T-B-SUBEDI, 章永松, 等. 有机肥对水稻根际土壤中微生物和酶活性的影响 [J]. 植物营养与肥料学报, 1999, 5(4):321−327. doi: 10.3321/j.issn:1008-505X.1999.04.005LUO A C, SUBEDI T B, ZHANG Y S, et al. Effect of organic manure on the numbers of microbes and enzyme activity in rice rhizosphere [J]. Plant Natrition and Fertilizen Science, 1999, 5(4): 321−327.(in Chinese) doi: 10.3321/j.issn:1008-505X.1999.04.005 [5] 刘素慧, 刘世琦, 张自坤, 等. 大蒜连作对其根际土壤微生物和酶活性的影响 [J]. 中国农业科学, 2010, 43(5):1000−1006. doi: 10.3864/j.issn.0578-1752.2010.05.015LIU S H, LIU S Q, ZHANG Z K, et al. Influence of garlic continuous cropping on rhizosphere soil microorganisms and enzyme activities [J]. Scientia Agricultura Sinica, 2010, 43(5): 1000−1006.(in Chinese) doi: 10.3864/j.issn.0578-1752.2010.05.015 [6] BLAGODATSKAYA E, KUZYAKOV Y. Active microorganisms in soil: Critical review of estimation criteria and approaches [J]. Soil Biology and Biochemistry, 2013, 67: 192−211. doi: 10.1016/j.soilbio.2013.08.024 [7] ZIMMERMAN A R. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) [J]. Environmental Science & Technology, 2010, 44(4): 1295−1301. [8] LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota–A review [J]. Soil Biology and Biochemistry, 2011, 43(9): 1812−1836. doi: 10.1016/j.soilbio.2011.04.022 [9] 李小清. 华西雨屏区天然次生林及其人工更新后不同植被类型土壤微生物和酶活性研究[D]. 雅安: 四川农业大学, 2014.LI X Q. The study of natural secondary forest and its artificial regeneration forests on soil microbial and enzyme activity in rainy area of west china[D]. Yaan: Sichuan Agricultural University, 2014. (in Chinese) [10] 林兴生, 林占熺, 林冬梅, 等. 5种菌草苗期抗盐性的评价 [J]. 福建农林大学学报(自然科学版), 2013, 42(2):195−201.LIN X S, LIN Z X, LIN D M, et al. Assessment on salt resistance at seedling stage of 5 species of Juncao under NaCl stress [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2013, 42(2): 195−201.(in Chinese) [11] 林兴生, 林占熺, 林冬梅, 等. 低温胁迫5种菌草的抗寒性评价 [J]. 草业学报, 2013, 22(2):227−234. doi: 10.11686/cyxb20130229LIN X S, LIN Z X, LIN D M, et al. Cold-tolerance of 5 species of juncao under low temperature stress [J]. Acta Prataculturae Sinica, 2013, 22(2): 227−234.(in Chinese) doi: 10.11686/cyxb20130229 [12] 林占熺. 菌草学[M]. 北京: 国家行政学院出版社, 2013. [13] 林占熺. 菌草生态环境产业[M]. 北京: 国家行政学院出版社, 2013. [14] 李波, 刘朋虎, 王义祥, 等. 以草代料栽培食用菌的相关技术与主要物质转化机制研究进展 [J]. 福建农业学报, 2015, 30(1):90−97. doi: 10.3969/j.issn.1008-0384.2015.01.016LI B, LIU P H, WANG Y X, et al. Utilization of herbage for and material transformation in edible fungi cultivation [J]. Fujian Journal of Agricultural Sciences, 2015, 30(1): 90−97.(in Chinese) doi: 10.3969/j.issn.1008-0384.2015.01.016 [15] 林雄杰, 范国成, 林冬梅, 等. 6份狼尾草属菌草的ITS和叶绿体matK序列分析 [J]. 福建农林大学学报(自然科学版), 2015, 44(2):174−180.LIN X J, FAN G C, LIN D M, et al. Sequence analysis on ITS and chloroplast mat K gene of six Pennisetum juncao [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2015, 44(2): 174−180.(in Chinese) [16] 林兴生, 林占熺, 林冬梅, 等. 不同种植年限的巨菌草对植物和昆虫多样性的影响 [J]. 应用生态学报, 2012, 23(10):2849−2854.LIN X S, LIN Z X, LIN D M, et al. Effects of different years of planting Pennisetum sp. on the plant-and insect diversity in Pennisetum sp. communities [J]. Chinese Journal of Applied Ecology, 2012, 23(10): 2849−2854.(in Chinese) [17] 郑金英, 陈丽凤, 林占熺. 菌草产业成长及其多功能性探析 [J]. 中国农学通报, 2011, 27(1):304−308.ZHENG J Y, CHEN L F, LIN Z X. The analysis of juncao industrial growth and its versatility [J]. Chinese Agricultural Science Bulletin, 2011, 27(1): 304−308.(in Chinese) [18] 林冬梅, 林占熺, 苏德伟, 等. 种植菌草对沙质荒漠化土壤养分、酶活性及微生物的影响 [J]. 河南农业科学, 2017, 46(5):61−65.LIN D M, LIN Z X, SU D W, et al. Effect of planting Juncao on nutrients, enzyme activities and microorganisms of desertified soils [J]. Journal of Henan Agricultural Sciences, 2017, 46(5): 61−65.(in Chinese) [19] 鲍士旦. 土壤农化分析 [M]. 第3版. 北京: 中国农业出版社, 2013 [20] O'DONNELL A G, SEASMAN M, MACRAE A, et al. Plants and fertilisers as drivers of change in microbial community structure and function in soils [J]. Plant and Soil, 2001, 232(1/2): 135−145. doi: 10.1023/A:1010394221729 [21] OZLUE, SANDHUSS, KUMARS, et al. Soil health indicators impacted by long-term cattle manure and inorganic fertilizer application in acorn-soy bean rotation of South Dakota [J]. Scientific reports, 2019, 9(1): 11776. doi: 10.1038/s41598-019-48207-z [22] AZEEM M, HAYAT R, HUSSAIN Q, et al. Effects of biochar and NPK on soil microbial biomass and enzyme activity during 2 years of application in the arid region [J]. Arabian Journal of Geosciences, 2019, 12(10): 1−13. [23] 刘爽, 王艳宇, 杨焕民, 等. 玉-鹅种养模式下土壤养分及土壤细菌群落功能多样性研究 [J]. 干旱地区农业研究, 2021, 39(2):1−9. doi: 10.7606/j.issn.1000-7601.2021.02.01LIU S, WANG Y Y, YANG H M, et al. The soil nutrients and functional diversity of soil bacterial community under the co-cultivation mode of breeding goose in cornfield [J]. Agricultural Research in the Arid Areas, 2021, 39(2): 1−9.(in Chinese) doi: 10.7606/j.issn.1000-7601.2021.02.01 [24] 马云华, 王秀峰, 魏珉, 等. 黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响 [J]. 应用生态学报, 2005, 16(11):2149−2153. doi: 10.3321/j.issn:1001-9332.2005.11.028MA Y H, WANG X F, WEI M, et al. Accumulation of phenolic acids in continuously cropped cucumber soil and their effects on soil microbes and enzyme activities [J]. Chinese Journal of Applied Ecology, 2005, 16(11): 2149−2153.(in Chinese) doi: 10.3321/j.issn:1001-9332.2005.11.028 [25] WOESE C R. Bacterial evolution [J]. Microbiol Rev, 1987, 51: 221−271. doi: 10.1128/mr.51.2.221-271.1987 [26] 冯慧琳, 徐辰生, 何欢辉, 等. 生物炭对土壤酶活和细菌群落的影响及其作用机制 [J]. 环境科学, 2021, 42(1):422−432.FENG H L, XU C S, HE H H, et al. Effect of biochar on soil enzyme activity & the bacterial community and its mechanism [J]. Environmental Science, 2021, 42(1): 422−432.(in Chinese) [27] 李岩, 何学敏, 杨晓东, 等. 不同生境黑果枸杞根际与非根际土壤微生物群落多样性 [J]. 生态学报, 2018, 38(17):5983−5995.LI Y, HE X M, YANG X D, et al. The microbial community diversity of the rhizosphere and bulk soils of Lycium ruthenicum in different habitats [J]. Acta Ecologica Sinica, 2018, 38(17): 5983−5995.(in Chinese) [28] 杨继松, 刘景双. 小叶章湿地土壤微生物生物量碳和可溶性有机碳的分布特征 [J]. 生态学杂志, 2009, 28(8):1544−1549.YANG J S, LIU J S. Distribution characteristics of microbial biomass carbon and dissolved organic carbon in Deyeuxia angustifolia marsh soils [J]. Chinese Journal of Ecology, 2009, 28(8): 1544−1549.(in Chinese) [29] 杨荣仲, 周会, 桂意云, 等. 甘蔗低氮胁迫性状变化与蔗茎含氮量的研究 [J]. 安徽农业科学, 2013, 41(2):481−484.YANG R Z, ZHOU H, GUI Y Y, et al. Response to low nitrogen stress and stalk nitrogen content of sugarcane germplasm [J]. Journal of Anhui Agricultural Sciences, 2013, 41(2): 481−484.(in Chinese) [30] NICOLAS G, GALLOWAY J N. An Earth-system perspective of the global nitrogen cycle [J]. Nature, 2008, 451(7176): 293−296. doi: 10.1038/nature06592 [31] FALKOWSKI P G, FENCHEL T, DELONG E F. The microbial engines that drive earth's biogeochemical cycles [J]. Science, 2008, 320(5879): 1034−1039. doi: 10.1126/science.1153213