Microbe-mediated Phytoremediation on Low Concentration Oil Sludge
-
摘要:
目的 探究4种新疆本土草本植物生物修复含油污泥的潜力,及其与微生物联合修复对低浓度含油污泥处理效果。 方法 以狗牙根(Cynodondactylon)、高羊茅(Festuca elata)、黑麦草(Lolium Perenne)和苏丹草(Sorghum sudanense)与解脂假丝酵母(Candida lipolytica,菌A)、2株枯草芽孢杆菌[菌B( Bacillus subtilis PL-2)和菌C( Bacillus subtilis XJ-16)]、混菌D(A+B+C)为研究对象,采用盆栽试验,分别设置微生物组、植物组、植物-微生物组及对照4组处理,分析不同处理对石油烃残留量、微生物数量、草种生物量和叶绿素含量的影响。 结果 120 d盆栽试验结表明,单独种植狗牙根、单独种植苏丹草、菌B、菌C处理对石油烃的降解效果较为相近,降解率分别为31.39%、34.19%、 33.71%与33.39%,显著高于对照组(P<0.05);草本植物与微生物联合修复中,狗牙根中添加菌A、菌B和菌C效果显著,石油烃的降解率可达43.02%、40.20%和42.54%,且在联合修复后土壤中可培养细菌与真菌数量显著增加,分别为1.50×105~2.59×105 cfu·g−1和4.32×104~5.53×104 cfu·g−1;此外,在添加降解菌后,狗牙根干重和叶绿素总含量均显著提高(P<0.05)。 结论 综合石油烃残留量、微生物数量、生物量以及叶绿素含量指标得出,新疆本地植物狗牙根与菌A(解脂菌假丝酵母)、菌B和菌C(均为枯草芽孢杆菌)的联合,可为当地低浓度含油污泥处理提供可行的技术方案。 -
关键词:
- 植物-微生物联合修复 /
- 石油污染 /
- 降解率 /
- 微生物数量 /
- 生理特性
Abstract:Objective Potential of applying native Xinjiang plants in combination with microbes as a bioagent to treat low concentration oil sludge pollution was explored. Method Three treatments of microbes, plants, and plant-microbe combination that used plant including Cynodon dactylon, Festuca elata, Lolium Perenne, or Sorghum sudanense and the microbes including Candida lipolytica (Microbe A), Bacillus subtilis PL-2 (Bacterium B), and/or B. subtilis XJ-16 (Bacterium C) were conducted along with control in a pot experiment for 120 d. Effects of the treatments on petroleum hydrocarbon residues, and microbial population, as well as biomass and chlorophyll content of the plants, were determined. Result Under the single-factor treatments, C. dactylon, S. sudanense, Bacterium B, or Bacterium C provided relatively similar effect in degrading petroleum hydrocarbons with 31.39%, 34.19%, 33.71%, and 33.39% reductions, respectively, which were significantly higher than control (P<0.05). The plant-microbe combinations, on the other hand, showed significantly greater pollution remedying effect, such as achieved by incorporating C. dactylon with Bacterium A, B, and C that delivered the hydrocarbon removal rates of 43.02%, 40.20%, and 42.54%, respectively. Meanwhile, the culturable bacteria count increased significantly from 1.50×105 cfu·g−1 to 2.59×105 cfu·g−1 and fungi count from 4.32×104 cfu·g−1 to 5.53×104 cfu·g−1. In addition, the dry weight and total chlorophyll content of C. dactylon rose significantly in the presence of the microbes (P<0.05). Conclusion In view of petroleum hydrocarbon residue, microbial population, plant biomass, and leaf chlorophyll content, it appeared that the combined applications of Xinjiang native plant C. dactylon with yeast C. lipolytica and bacterium B. subtilis PL-2 or XJ-16 could be feasible for cleaning the environmental pollution caused by low concentration oil sludge in the area. -
表 1 试验处理组
Table 1. Experimental treatments
处理 Treatment 处理代号 Code 备注 Notes 空白对照 Control CK 自然条件下含油污泥降解情况 微生物组 Microbial 解脂假丝酵母菌(A)、枯草芽孢杆菌(B)、枯草芽孢杆菌(C)、混菌D(A+B+C) 添加微生物对含油污泥的降解情况 植物组 Plant 狗牙根(GYG、GYG+YN)、高羊茅(GYM、GYM+YN)、黑麦草(HMC、HMC+YN)、苏丹草(SDC、SDC+YN) GYG、GYN、HMC、SDC为正常土壤条件下生长,GYG+YN、GYN+YN、HMC+YN、SDC+YN为污染土壤中生长。不同草本植物对含油污泥的降解情况。 植物-微生物组 Microbial and Plant GYG+A、GYG+B、GYG+C、GYG+D;GYM+A、GYM+B、GYM+C、GYM+D;HMC+A、HMC+B、HMC+C、HMC+D;SDC+A、SDC+B、SDC+C、SDC+D 植物微生物联合修复对石油烃降解效率 表 2 处理组中石油烃的残留量与降解率
Table 2. Residues and degradation of petroleum hydrocarbons by each treatment
处理组
Group处理
Treatment30 d 60 d 120 d 残留量
Residual amount/g降解率
Degradation rate/%残留量
Residual amount/g降解率
Degradation rate/%残留量
Residual amount/g降解率
Degradation rate/%对照组
Control groupCK 5.71±0.09 ab 8.13±1.62 h 5.20±0.15 a 16.53±2.41 f 4.85±0.05 a 22.15±0.80 k 植物组
Plant groupGYG+YN 5.38±0.23 bcdef 13.72±3.62 efgh 4.33±0.30 efj 30.57±6.02 ab 4.27±0.13 bcdefgh 31.39±2.01 defghi GYM+YN 5.35±0.45 bcdef 13.86±3.62 efgh 4.52±0.13 defg 27.37±2.01 abc 4.45±0.15 bcde 28.57±2.41 ghij HMC+YN 5.30±0.10 bcdefg 14.93±1.61 defgh 4.50±0.05 defg 27.77±0.80 abc 4.35±0.15 cdefg 30.18±2.41 e SDC+YN 4.70±0.05 ghij 24.56±0.80 abc 4.20±0.18 fg 32.58±1.61 a 4.10±0.05 ghi 34.19±0.80 cde 微生物
Microbial groupA 5.25±0.30 bcdefgh 15.73±4.82 defgh 4.63±0.03 cdef 25.75±0.40 abcd 4.27±0.03 ghi 31.39±0.40 defghi B 5.15±0.20 bcdefghi 17.34±3.21 cedfg 4.53±0.03 defg 25.38±3.08 abc 4.10±0.05 ghi 33.71±1.05 cdef C 4.67±0.48 hij 24.97±7.62 abc 4.87±0.28 abcd 21.76±4.41 cdef 4.15±0.20 efghi 33.39±3.21 cdefg D 5.65±0.45 abc 9.31±7.22 gh 4.97±0.08 abc 20.15±0.41 def 4.67±0.28 ab 25.01±5.67 jk 植物—微生物
Microbial and PlantGYG+A 5.40±0.10 bcde 13.32±1.61 efgh 4.22±0.08 fg 32.19±1.21 a 3.55±0.05 k 43.02±0.80 a GYG+B 4.90±0.25 efghij 21.62±4.42 bcde 4.33±0.03 efg 30.57±0.40 ab 3.73±0.08 jk 40.20±1.21 ab GYG+C 5.00±0.30 defghi 19.74±4.82 bcdef 4.35±0.10 efg 30.18±1.61 ab 3.58±0.35 k 42.54±5.22 a GYG+D 4.92±0.28 defghij 20.96±4.42 bcde 5.10±0.15 ab 18.41±2.02 ef 3.95±0.35 ij 36.60±5.62 bc GYM+A 4.75±0.39 defghi 19.32±4.42 bcdef 4.60±0.18 cdef 26.16±3.21 abcd 4.25±0.10 defghi 32.05±2.02 cdefgh GYM+B 4.33±0.13 j 30.57±2.01 a 4.37±0.03 efg 29.78±0.41 ab 4.45±0.10 bcde 28.57±1.61 ghij GYM+C 4.59±0.53 fghij 23.15±3.27 abcd 4.40±0.10 efg 29.78±13.65 ab 4.43±0.16 cdefg 28.96±2.81 fghig GYM+D 5.52±0.10 abcd 11.33±5.70 fgh 5.12±0.08 ab 17.74±1.21ef 4.43±0.08 cdefg 28.97±1.21 fghig HMC+A 5.40±0.33 a 13.37±5.70 efgh 4.33±0.08 efg 30.57±1.21ab 4.20±0.10 defghi 32.58±1.61 cdefgh HMC+B 4.88±0.03 efghij 21.74±0.400 bcde 4.33±0.08 g 29.89±0.54 ab 3.77±0.35 efghi 32.99±0.40 cdefgh HMC+C 4.80±0.15 fghij 23.33±0.41 abcd 4.72±0.28 bcde 24.16±4.42 bcde 4.55±0.10 bc 26.97±1.61 ij HMC+D 5.26±0.73 bcdef 15.69±12.04 defgh 4.52±0.13 defg 27.37±2.01 abc 4.48±0.03 bcd 28.16±0.40 hij SDC +A 5.35±0.50 bcdef 14.13±0.81 edfgh 4.52±0.18 defg 27.38±2.81 abc 3.97±0.03 hij 36.20±0.41 bcd SDC +B 4.33±0.08 j 30.57±1.21 a 4.27±0.03 fg 31.39±0.40 a 4.13±0.08 fghi 33.94±0.98 cde SDC +C 5.10±0.05 cdefghi 18.14±0.80 cedf 4.98±0.18 abc 20.14±2.81 def 4.03±0.18 hi 35.38±2.81 cd SDC +D 4.55±0.15 ig 26.97±2.41 ab 4.55±0.05 defg 26.97±0.81 abcd 4.18±0.03 defghi 32.98±0.41 cdefgh 不同小写字母表示不同处理间差异显著(P<0.05)。表3同。
Different lowercase letters represent significant difference among groups (P<0.05). Same for Table 3.表 3 不同处理土壤中微生物数量
Table 3. Microbial loads in sludge by treatments
处理组
Group处理
Treatment细菌
Bacteria/
(×105 cfu·g−1)真菌
Fungus
(×104 cfu·g−1)对照组 Control group CK 0.08±0.01 i 0.67±0.06 i 植物组 Plant group GYG+YN 1.33±0.10 ef 3.58±0.38 efg GYM+YN 1.09±0.02 g 0.33±0.39 fgh HMC+YN 1.12±0.13 g 0.35±0.20 efg SDC+YN 0.48±0.04 h 2.02±0.28 k 微生物 Microbial group A 1.19±0.04 fg 4.78±0.39 b B 0.96±0.07 g 3.43±0.21 efgh C 1.02±0.07 g 4.13±0.24 bcde D 0.65±0.06 g 2.95±0.38 ghi 植物-微生物
Microbial and plantGYG+A 1.79±0.06 b 5.53±0.58 a GYG+B 1.50±0.07 cde 4.32±0.55 bcd GYG+C 2.59±0.12 a 4.40±0.36 bc GYG+D 1.91±0.08 b 2.00±0.41 k GYM+A 1.45±0.09 cde 4.03±0.43 cde GYM+B 1.39±0.20 de 3.53±0.43 efg GYM+C 1.33±0.09 ef 3.07±0.49 fgh GYM+D 1.32±0.11 ef 3.25±0.03 fgh HMC+A 1.47±0.13 cde 3.67±0.33 def HMC+B 1.61±0.09 c 4.08±0.19 cde HMC+C 1.12±0.27 g 2.75±0.48 hig HMC+D 1.56±0.13 cd 2.30±0.33 igk SDC+A 1.51±0.09 cde 3.15±0.40 fgh SDC+B 1.32±0.10 ef 2.80±0.35 hig SDC+C 1.37±0.07 def 3.50±0.23 efg SDC+D 1.12±0.08 g 2.15±0.26 jk -
[1] 包清华, 黄立信, 修建龙, 等. 油气田含油污泥生物处理技术研究进展 [J]. 化工进展, 2021, 40(5):2762−2773. doi: 10.16085/j.issn.1000-6613.2020-1299BAO Q H, HUANG L X, XIU J L, et al. Development in the biological treatment of oily sludge in oil and gas fields [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2762−2773.(in Chinese) doi: 10.16085/j.issn.1000-6613.2020-1299 [2] 郭盼, 刘正宁, 李阳, 等. 浅析含油污泥处理技术 [J]. 东方电气评论, 2019, 33(3):6−9. doi: 10.3969/j.issn.1001-9006.2019.03.002GUO P, LIU Z N, LI Y, et al. Analysis on oily sludge treatment technology [J]. Dongfang Electric Review, 2019, 33(3): 6−9.(in Chinese) doi: 10.3969/j.issn.1001-9006.2019.03.002 [3] 梁宏宝, 张全娟, 陈洪涛, 等. 含油污泥联合处理技术的应用现状与展望 [J]. 环境工程技术学报, 2020, 10(1):118−125. doi: 10.12153/j.issn.1674-991X.20190065LIANG H B, ZHANG Q J, CHEN H T, et al. Application status and prospect of combined treatment technology for oily sludge [J]. Journal of Environmental Engineering Technology, 2020, 10(1): 118−125.(in Chinese) doi: 10.12153/j.issn.1674-991X.20190065 [4] 新疆维吾尔自治区质量监督局. 新疆油气田含油污泥及钻井固体废物处理处置技术规范: DB 65/T 3999 -2017[S]. 新疆: 2017. [5] HU G J, LI J B, ZENG G M. Recent development in the treatment of oily sludge from petroleum industry: A review [J]. Journal of Hazardous Materials, 2013, 261: 470−490. doi: 10.1016/j.jhazmat.2013.07.069 [6] 李俊生, 肖能文. 陆地石油开采生态风险评估的技术研究[M]. 北京: 中国环境出版社, 2013. [7] 马强, 张旭红, 林爱军, 等. 土壤石油烃污染的植物毒性及植物-微生物联合降解 [J]. 环境工程学报, 2009, 3(3):544−548.MA Q, ZHANG X H, LIN A J, et al. Phytoxicity and biodegradation of petroleum hydrocarbon contamination in soil [J]. Chinese Journal of Environmental Engineering, 2009, 3(3): 544−548.(in Chinese) [8] 王丽萍, 朱新萍, 董双快, 等. 苏丹草与紫花苜蓿对新疆原油污染土壤的响应 [J]. 环境工程, 2016, 34(11):145−149.WANG L P, ZHU X P, DONG S K, et al. Response of sorghum sudanense and Medicago sativa growing on soil contaminated with crude oil in Xinjiang [J]. Environmental Engineering, 2016, 34(11): 145−149.(in Chinese) [9] 郭鹏, 李汉周, 刘松林, 等. 油田含油污泥土壤降解与修复试验研究 [J]. 石油与天然气化工, 2019, 48(6):105−110. doi: 10.3969/j.issn.1007-3426.2019.06.021GUO P, LI H Z, LIU S L, et al. Study on degradation and rehabilitation of oily sludge soil in oil field [J]. Chemical Engineering of Oil & Gas, 2019, 48(6): 105−110.(in Chinese) doi: 10.3969/j.issn.1007-3426.2019.06.021 [10] 史德青, 张建, 祝威, 等. 胜利油田含油污泥的植物修复研究 [J]. 环境污染与防治, 2008, 30(8):52−55. doi: 10.3969/j.issn.1001-3865.2008.08.014SHI D Q, ZHANG J, ZHU W, et al. Phytoremediation of oily sludge of shengli oilfield [J]. Environmental Pollution & Control, 2008, 30(8): 52−55.(in Chinese) doi: 10.3969/j.issn.1001-3865.2008.08.014 [11] 李文娆, 李小利, 张晓, 等. 甜高粱/紫花苜蓿对石油污染土壤的光合适应性研究 [J]. 河南大学学报(自然科学版), 2015, 45(3):327−333.LI W R, LI X L, ZHANG X, et al. Photosynthetic adaptability of sweet Sorghum and alfalfa to crude oil-polluted soils [J]. Journal of Henan University (Natural Science), 2015, 45(3): 327−333.(in Chinese) [12] ALI M H, KHAN M I, BASHIR S, et al. Biochar and Bacillus sp. MN54 assisted phytoremediation of diesel and plant growth promotion of maize in hydrocarbons contaminated soil [J]. Agronomy, 2021, 11(9): 1795. doi: 10.3390/agronomy11091795 [13] ZHOU Q X, CAI Z, ZHANG Z N, et al. Ecological remediation of hydrocarbon contaminated soils with weed plant [J]. Journal of Resources and Ecology, 2011, 2(2): 97−105. [14] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. [15] 沈萍, 陈向东. 微生物学实验[M]. 4版. 北京: 高等教育出版社, 2007. [16] 王如刚, 王敏, 牛晓伟, 等. 超声-索氏萃取-重量法测定土壤中总石油烃含量 [J]. 分析化学, 2010, 38(3):417−420.WANG R G, WANG M, NIU X W, et al. Determination of total petroleum hydrocarbons content in soil by ultrasonic-soxhlet extraction-gravimetric analysis [J]. Chinese Journal of Analytical Chemistry, 2010, 38(3): 417−420.(in Chinese) [17] 赵媛媛, 张万坤, 马慧, 等. 降解菌ZQ5与紫茉莉对芘污染土壤的联合修复 [J]. 环境工程学报, 2013, 7(7):2752−2756.ZHAO Y Y, ZHANG W K, MA H, et al. Microbial-phytoremediation of pyrene contaminated soil using pyrene-degrading strain ZQ5 with Mirabilis Jalapa [J]. Chinese Journal of Environmental Engineering, 2013, 7(7): 2752−2756.(in Chinese) [18] 刘永军, 曹中利, 贾海燕, 等. 黑麦草-不动杆菌组合体系对石油污染土壤的生物强化修复 [J]. 化工环保, 2018, 38(1):101−105. doi: 10.3969/j.issn.1006-1878.2018.01.018LIU Y J, CAO Z L, JIA H Y, et al. Enhanced bioremediation of petroleum-contaminated soil using ryegrass-acinetobacter combination system [J]. Environmental Protection of Chemical Industry, 2018, 38(1): 101−105.(in Chinese) doi: 10.3969/j.issn.1006-1878.2018.01.018 [19] 欧阳威, 刘红, 于勇勇, 等. 高羊茅对微生物强化修复石油污染土壤影响的研究 [J]. 环境污染治理技术与设备, 2006(1):94−97.OUYANG W, LIU H, YU Y Y, et al. The combined effects of tall fescue(Festuca arundinace) phyto-remediation and bio-augmentation on treatment of oil-contaminated soil [J]. Techniques and Equipment for Environmental Pollution Control, 2006(1): 94−97.(in Chinese) [20] HOU J Y, LIU W X, WANG B B, et al. PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response [J]. Chemosphere, 2015, 138: 592−598. doi: 10.1016/j.chemosphere.2015.07.025 [21] GLICK B R. Using soil bacteria to facilitate phytoremediation [J]. Biotechnology Advances, 2010, 28(3): 367−374. doi: 10.1016/j.biotechadv.2010.02.001 [22] 胥九兵, 迟建国, 邱维忠, 等. 石油降解菌剂的研制及其在石油污染土壤修复中的应用 [J]. 生物加工过程, 2009, 7(6):21−24. doi: 10.3969/j.issn.1762-3678.2009.06.004XU J B, CHI J G, QIU W Z, et al. Application of bacterial agent capable of degrading petroleum for remediation of oil-contaminated soil [J]. Chinese Journal of Bioprocess Engineering, 2009, 7(6): 21−24.(in Chinese) doi: 10.3969/j.issn.1762-3678.2009.06.004 [23] 王京秀, 张志勇, 万云洋, 等. 植物-微生物联合修复石油污染土壤的实验研究 [J]. 环境工程学报, 2014, 8(8):3454−3460.WANG J X, ZHANG Z Y, WAN Y Y, et al. Experimental study on plant-microbial remediation of oil-contaminated soil [J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3454−3460.(in Chinese) [24] 王洪. 多环芳烃污染农田土壤原位生物修复技术研究[D]. 沈阳: 东北大学, 2011.WANG H. Research on In-situ bioremediation for farm soil contaminated with polycyclic aromatic hydrocarbons[D]. Shenyang: Northeastern University, 2011. (in Chinese) [25] 刘魏魏, 尹睿, 林先贵, 等. 生物表面活性剂-微生物强化紫花苜蓿修复多环芳烃污染土壤 [J]. 环境科学, 2010, 31(4):1079−1084.LIU W W, YIN R, LIN X G, et al. Interaction of biosurfactant-microorganism to enhance phytoremediation of aged polycyclic aromatic hydrocarbons (PAHs) contaminated soils with alfalfa (Medicago sativa L. ) [J]. Environmental Science, 2010, 31(4): 1079−1084.(in Chinese) [26] 旷远文, 温达志, 钟传文, 等. 根系分泌物及其在植物修复中的作用 [J]. 植物生态学报, 2003, 27(5):709−717. doi: 10.3321/j.issn:1005-264X.2003.05.020KUANG Y W, WEN D Z, ZHONG C W, et al. Root exudates and their roles in phytoremediation [J]. Acta Phytoecologica Sinica, 2003, 27(5): 709−717.(in Chinese) doi: 10.3321/j.issn:1005-264X.2003.05.020 [27] JONES D L, DARRAH P R. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere [J]. Plant and Soil, 1994, 166(2): 247−257. doi: 10.1007/BF00008338 [28] MARSCHNER H, ROMHELD V, CAKMAK I. Root-induced changes of nutrient availability in the rhizosphere [J]. Journal of Plant Nutrition, 1987, 10(9): 1175−1184. doi: 10.1080/01904168709363645 [29] LYNCH J M, WHIPPS J M. Substrate flow in the rhizosphere [J]. Plant and Soil, 1990, 129(1): 1−10. doi: 10.1007/BF00011685 [30] YANG C H, CROWLEY D E. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status [J]. Applied and Environmental Microbiology, 2000, 66(1): 345−351. doi: 10.1128/AEM.66.1.345-351.2000 [31] 王丽丽, 杨谦. 接种枯草芽孢杆菌和丛枝菌根真菌促进红三叶修复石油污染土壤 [J]. 江苏农业科学, 2016, 44(5):526−529.WANG L L, YANG Q. Inoculating Bacillus subtilis and arbuscular mycorrhizal fungi to promote remediation of oil contaminated soil by Trifolium repens [J]. Jiangsu Agricultural Sciences, 2016, 44(5): 526−529.(in Chinese) [32] 高乃媛, 刘宪斌, 赵兴茹. 石油烃对翅碱蓬生理特性的影响及植物-微生物联合降解 [J]. 环境工程学报, 2013, 7(4):1578−1582.GAO N Y, LIU X B, ZHAO X R. Influence of oil in soil on growth and physiological indexes of Suaeda heteroptera and plant-microbial remediation [J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1578−1582.(in Chinese) [33] 豆胜才. 红平红球菌KB1协同苜蓿降解石油烃的生态学效应[D]. 兰州: 兰州理工大学, 2020.DOU S C. Ecological effect of Rhodococcus erythropolis Kb1 on alfalfa degradation of petroleum hydrocarbons[D]. Lanzhou: Lanzhou University of Technology, 2020. (in Chinese) [34] 雒晓芳, 陈丽华, 王冬梅, 等. 不同石油浓度对两种作物生理生化的影响 [J]. 生物技术通报, 2016, 32(10):135−140.LUO X F, CHEN L H, WANG D M, et al. The influence for two corps physiological index by the different petroleum density [J]. Biotechnology Bulletin, 2016, 32(10): 135−140.(in Chinese) [35] 岳冰冰, 李鑫, 任芳菲, 等. 石油污染对紫花苜蓿部分生理指标的影响 [J]. 草业科学, 2011, 28(2):236−240. doi: 10.3969/j.issn.1001-0629.2011.02.013YUE B B, LI X, REN F F, et al. Effects of petroleum contamination on some of physiological indexes of alfalfa [J]. Pratacultural Science, 2011, 28(2): 236−240.(in Chinese) doi: 10.3969/j.issn.1001-0629.2011.02.013 [36] HO C H, BANKS M K. Degradation of polycyclic aromatic hydrocarbons in the rhizosphere of Festuca arundinacea and associated microbial community changes [J]. Bioremediation Journal, 2006, 10(3): 93−104. doi: 10.1080/10889860600939609 [37] BINET P, PORTAL J M, LEYVAL C. Dissipation of 3-6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass [J]. Soil Biology and Biochemistry, 2000, 32(14): 2011−2017. doi: 10.1016/S0038-0717(00)00100-0 [38] ASLANTAŞ R, ÇAKMAKÇI R, ŞAHIN F. Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions [J]. Scientia Horticulturae, 2007, 111(4): 371−377. doi: 10.1016/j.scienta.2006.12.016 [39] RYU C M, HU C H, LOCY R D, et al. Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana [J]. Plant and Soil, 2005, 268(1): 285−292. doi: 10.1007/s11104-004-0301-9 [40] BELIMOV A A, DODD I C, HONTZEAS N, et al. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling [J]. New Phytologist, 2009, 181(2): 413−423. doi: 10.1111/j.1469-8137.2008.02657.x