• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

草本植物-微生物联合修复低浓度含油污泥技术研究

何飞焱 施宠 董丁 季凯 韩斯琴 张颖

何飞焱,施宠,董丁,等. 草本植物-微生物联合修复低浓度含油污泥技术研究 [J]. 福建农业学报,2022,37(10):1344−1353 doi: 10.19303/j.issn.1008-0384.2022.010.014
引用本文: 何飞焱,施宠,董丁,等. 草本植物-微生物联合修复低浓度含油污泥技术研究 [J]. 福建农业学报,2022,37(10):1344−1353 doi: 10.19303/j.issn.1008-0384.2022.010.014
HE F Y, SHI C, DONG D, et al. Microbe-mediated Phytoremediation on Low Concentration Oil Sludge [J]. Fujian Journal of Agricultural Sciences,2022,37(10):1344−1353 doi: 10.19303/j.issn.1008-0384.2022.010.014
Citation: HE F Y, SHI C, DONG D, et al. Microbe-mediated Phytoremediation on Low Concentration Oil Sludge [J]. Fujian Journal of Agricultural Sciences,2022,37(10):1344−1353 doi: 10.19303/j.issn.1008-0384.2022.010.014

草本植物-微生物联合修复低浓度含油污泥技术研究

doi: 10.19303/j.issn.1008-0384.2022.010.014
基金项目: 中国科学院科技服务网络计划(STS)重点项目(KFJ-STS-ZDTP-064);国家自然科学基金项目(31760704)
详细信息
    作者简介:

    何飞焱(1995−),男,硕士研究生,主要从事污染土壤修复研究(E-mail:923393168@qq.com

    通讯作者:

    施宠(1979−),女,副教授,主要从事环境微生物学研究(E-mail:shichong98@163.com

    张颖(1965−),女,研究员,主要从事环境微生物学与环境生物技术研究(E-mail:yzhang@iae.ac.cn

  • 中图分类号: X 173

Microbe-mediated Phytoremediation on Low Concentration Oil Sludge

  • 摘要:   目的  探究4种新疆本土草本植物生物修复含油污泥的潜力,及其与微生物联合修复对低浓度含油污泥处理效果。  方法  以狗牙根(Cynodondactylon)、高羊茅(Festuca elata)、黑麦草(Lolium Perenne)和苏丹草(Sorghum sudanense)与解脂假丝酵母(Candida lipolytica,菌A)、2株枯草芽孢杆菌[菌B( Bacillus subtilis PL-2)和菌C( Bacillus subtilis XJ-16)]、混菌D(A+B+C)为研究对象,采用盆栽试验,分别设置微生物组、植物组、植物-微生物组及对照4组处理,分析不同处理对石油烃残留量、微生物数量、草种生物量和叶绿素含量的影响。  结果  120 d盆栽试验结表明,单独种植狗牙根、单独种植苏丹草、菌B、菌C处理对石油烃的降解效果较为相近,降解率分别为31.39%、34.19%、 33.71%与33.39%,显著高于对照组(P<0.05);草本植物与微生物联合修复中,狗牙根中添加菌A、菌B和菌C效果显著,石油烃的降解率可达43.02%、40.20%和42.54%,且在联合修复后土壤中可培养细菌与真菌数量显著增加,分别为1.50×105~2.59×105 cfu·g−1和4.32×104~5.53×104 cfu·g−1;此外,在添加降解菌后,狗牙根干重和叶绿素总含量均显著提高(P<0.05)。  结论  综合石油烃残留量、微生物数量、生物量以及叶绿素含量指标得出,新疆本地植物狗牙根与菌A(解脂菌假丝酵母)、菌B和菌C(均为枯草芽孢杆菌)的联合,可为当地低浓度含油污泥处理提供可行的技术方案。
  • 图  1  不同处理植物生物量

    不同小写字母表示不同处理间差异显著( P < 0.05)。图2同。

    Figure  1.  Plant biomass in sludge by treatments

    Data with different lowercase letters represent significant differences(P<0.05). Same for Fig.2.

    图  2  不同处理下总叶绿素的含量

    Figure  2.  Total chlorophyll contents of plants under treatments

    表  1  试验处理组

    Table  1.   Experimental treatments

    处理 Treatment    处理代号 Code   备注 Notes   
    空白对照 Control CK 自然条件下含油污泥降解情况
    微生物组 Microbial 解脂假丝酵母菌(A)、枯草芽孢杆菌(B)、枯草芽孢杆菌(C)、混菌D(A+B+C) 添加微生物对含油污泥的降解情况
    植物组 Plant 狗牙根(GYG、GYG+YN)、高羊茅(GYM、GYM+YN)、黑麦草(HMC、HMC+YN)、苏丹草(SDC、SDC+YN) GYG、GYN、HMC、SDC为正常土壤条件下生长,GYG+YN、GYN+YN、HMC+YN、SDC+YN为污染土壤中生长。不同草本植物对含油污泥的降解情况。
    植物-微生物组 Microbial and Plant GYG+A、GYG+B、GYG+C、GYG+D;GYM+A、GYM+B、GYM+C、GYM+D;HMC+A、HMC+B、HMC+C、HMC+D;SDC+A、SDC+B、SDC+C、SDC+D 植物微生物联合修复对石油烃降解效率
    下载: 导出CSV

    表  2  处理组中石油烃的残留量与降解率

    Table  2.   Residues and degradation of petroleum hydrocarbons by each treatment

    处理组
    Group
    处理
    Treatment
    30 d 60 d 120 d
    残留量
    Residual amount/g
    降解率
    Degradation rate/%
    残留量
    Residual amount/g
    降解率
    Degradation rate/%
    残留量
    Residual amount/g
    降解率
    Degradation rate/%
    对照组
    Control group
    CK 5.71±0.09 ab 8.13±1.62 h 5.20±0.15 a 16.53±2.41 f 4.85±0.05 a 22.15±0.80 k
    植物组
    Plant group
    GYG+YN 5.38±0.23 bcdef 13.72±3.62 efgh 4.33±0.30 efj 30.57±6.02 ab 4.27±0.13 bcdefgh 31.39±2.01 defghi
    GYM+YN 5.35±0.45 bcdef 13.86±3.62 efgh 4.52±0.13 defg 27.37±2.01 abc 4.45±0.15 bcde 28.57±2.41 ghij
    HMC+YN 5.30±0.10 bcdefg 14.93±1.61 defgh 4.50±0.05 defg 27.77±0.80 abc 4.35±0.15 cdefg 30.18±2.41 e
    SDC+YN 4.70±0.05 ghij 24.56±0.80 abc 4.20±0.18 fg 32.58±1.61 a 4.10±0.05 ghi 34.19±0.80 cde
    微生物
    Microbial group
    A 5.25±0.30 bcdefgh 15.73±4.82 defgh 4.63±0.03 cdef 25.75±0.40 abcd 4.27±0.03 ghi 31.39±0.40 defghi
    B 5.15±0.20 bcdefghi 17.34±3.21 cedfg 4.53±0.03 defg 25.38±3.08 abc 4.10±0.05 ghi 33.71±1.05 cdef
    C 4.67±0.48 hij 24.97±7.62 abc 4.87±0.28 abcd 21.76±4.41 cdef 4.15±0.20 efghi 33.39±3.21 cdefg
    D 5.65±0.45 abc 9.31±7.22 gh 4.97±0.08 abc 20.15±0.41 def 4.67±0.28 ab 25.01±5.67 jk
    植物—微生物
    Microbial and Plant
    GYG+A 5.40±0.10 bcde 13.32±1.61 efgh 4.22±0.08 fg 32.19±1.21 a 3.55±0.05 k 43.02±0.80 a
    GYG+B 4.90±0.25 efghij 21.62±4.42 bcde 4.33±0.03 efg 30.57±0.40 ab 3.73±0.08 jk 40.20±1.21 ab
    GYG+C 5.00±0.30 defghi 19.74±4.82 bcdef 4.35±0.10 efg 30.18±1.61 ab 3.58±0.35 k 42.54±5.22 a
    GYG+D 4.92±0.28 defghij 20.96±4.42 bcde 5.10±0.15 ab 18.41±2.02 ef 3.95±0.35 ij 36.60±5.62 bc
    GYM+A 4.75±0.39 defghi 19.32±4.42 bcdef 4.60±0.18 cdef 26.16±3.21 abcd 4.25±0.10 defghi 32.05±2.02 cdefgh
    GYM+B 4.33±0.13 j 30.57±2.01 a 4.37±0.03 efg 29.78±0.41 ab 4.45±0.10 bcde 28.57±1.61 ghij
    GYM+C 4.59±0.53 fghij 23.15±3.27 abcd 4.40±0.10 efg 29.78±13.65 ab 4.43±0.16 cdefg 28.96±2.81 fghig
    GYM+D 5.52±0.10 abcd 11.33±5.70 fgh 5.12±0.08 ab 17.74±1.21ef 4.43±0.08 cdefg 28.97±1.21 fghig
    HMC+A 5.40±0.33 a 13.37±5.70 efgh 4.33±0.08 efg 30.57±1.21ab 4.20±0.10 defghi 32.58±1.61 cdefgh
    HMC+B 4.88±0.03 efghij 21.74±0.400 bcde 4.33±0.08 g 29.89±0.54 ab 3.77±0.35 efghi 32.99±0.40 cdefgh
    HMC+C 4.80±0.15 fghij 23.33±0.41 abcd 4.72±0.28 bcde 24.16±4.42 bcde 4.55±0.10 bc 26.97±1.61 ij
    HMC+D 5.26±0.73 bcdef 15.69±12.04 defgh 4.52±0.13 defg 27.37±2.01 abc 4.48±0.03 bcd 28.16±0.40 hij
    SDC +A 5.35±0.50 bcdef 14.13±0.81 edfgh 4.52±0.18 defg 27.38±2.81 abc 3.97±0.03 hij 36.20±0.41 bcd
    SDC +B 4.33±0.08 j 30.57±1.21 a 4.27±0.03 fg 31.39±0.40 a 4.13±0.08 fghi 33.94±0.98 cde
    SDC +C 5.10±0.05 cdefghi 18.14±0.80 cedf 4.98±0.18 abc 20.14±2.81 def 4.03±0.18 hi 35.38±2.81 cd
    SDC +D 4.55±0.15 ig 26.97±2.41 ab 4.55±0.05 defg 26.97±0.81 abcd 4.18±0.03 defghi 32.98±0.41 cdefgh
    不同小写字母表示不同处理间差异显著(P<0.05)。表3同。
    Different lowercase letters represent significant difference among groups (P<0.05). Same for Table 3.
    下载: 导出CSV

    表  3  不同处理土壤中微生物数量

    Table  3.   Microbial loads in sludge by treatments

    处理组
    Group
    处理
    Treatment
    细菌
    Bacteria/
    (×105 cfu·g−1
    真菌
    Fungus
    (×104 cfu·g−1
    对照组 Control group CK 0.08±0.01 i 0.67±0.06 i
    植物组 Plant group GYG+YN 1.33±0.10 ef 3.58±0.38 efg
    GYM+YN 1.09±0.02 g 0.33±0.39 fgh
    HMC+YN 1.12±0.13 g 0.35±0.20 efg
    SDC+YN 0.48±0.04 h 2.02±0.28 k
    微生物 Microbial group A 1.19±0.04 fg 4.78±0.39 b
    B 0.96±0.07 g 3.43±0.21 efgh
    C 1.02±0.07 g 4.13±0.24 bcde
    D 0.65±0.06 g 2.95±0.38 ghi
    植物-微生物
    Microbial and plant
    GYG+A 1.79±0.06 b 5.53±0.58 a
    GYG+B 1.50±0.07 cde 4.32±0.55 bcd
    GYG+C 2.59±0.12 a 4.40±0.36 bc
    GYG+D 1.91±0.08 b 2.00±0.41 k
    GYM+A 1.45±0.09 cde 4.03±0.43 cde
    GYM+B 1.39±0.20 de 3.53±0.43 efg
    GYM+C 1.33±0.09 ef 3.07±0.49 fgh
    GYM+D 1.32±0.11 ef 3.25±0.03 fgh
    HMC+A 1.47±0.13 cde 3.67±0.33 def
    HMC+B 1.61±0.09 c 4.08±0.19 cde
    HMC+C 1.12±0.27 g 2.75±0.48 hig
    HMC+D 1.56±0.13 cd 2.30±0.33 igk
    SDC+A 1.51±0.09 cde 3.15±0.40 fgh
    SDC+B 1.32±0.10 ef 2.80±0.35 hig
    SDC+C 1.37±0.07 def 3.50±0.23 efg
    SDC+D 1.12±0.08 g 2.15±0.26 jk
    下载: 导出CSV
  • [1] 包清华, 黄立信, 修建龙, 等. 油气田含油污泥生物处理技术研究进展 [J]. 化工进展, 2021, 40(5):2762−2773. doi: 10.16085/j.issn.1000-6613.2020-1299

    BAO Q H, HUANG L X, XIU J L, et al. Development in the biological treatment of oily sludge in oil and gas fields [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2762−2773.(in Chinese) doi: 10.16085/j.issn.1000-6613.2020-1299
    [2] 郭盼, 刘正宁, 李阳, 等. 浅析含油污泥处理技术 [J]. 东方电气评论, 2019, 33(3):6−9. doi: 10.3969/j.issn.1001-9006.2019.03.002

    GUO P, LIU Z N, LI Y, et al. Analysis on oily sludge treatment technology [J]. Dongfang Electric Review, 2019, 33(3): 6−9.(in Chinese) doi: 10.3969/j.issn.1001-9006.2019.03.002
    [3] 梁宏宝, 张全娟, 陈洪涛, 等. 含油污泥联合处理技术的应用现状与展望 [J]. 环境工程技术学报, 2020, 10(1):118−125. doi: 10.12153/j.issn.1674-991X.20190065

    LIANG H B, ZHANG Q J, CHEN H T, et al. Application status and prospect of combined treatment technology for oily sludge [J]. Journal of Environmental Engineering Technology, 2020, 10(1): 118−125.(in Chinese) doi: 10.12153/j.issn.1674-991X.20190065
    [4] 新疆维吾尔自治区质量监督局. 新疆油气田含油污泥及钻井固体废物处理处置技术规范: DB 65/T 3999 -2017[S]. 新疆: 2017.
    [5] HU G J, LI J B, ZENG G M. Recent development in the treatment of oily sludge from petroleum industry: A review [J]. Journal of Hazardous Materials, 2013, 261: 470−490. doi: 10.1016/j.jhazmat.2013.07.069
    [6] 李俊生, 肖能文. 陆地石油开采生态风险评估的技术研究[M]. 北京: 中国环境出版社, 2013.
    [7] 马强, 张旭红, 林爱军, 等. 土壤石油烃污染的植物毒性及植物-微生物联合降解 [J]. 环境工程学报, 2009, 3(3):544−548.

    MA Q, ZHANG X H, LIN A J, et al. Phytoxicity and biodegradation of petroleum hydrocarbon contamination in soil [J]. Chinese Journal of Environmental Engineering, 2009, 3(3): 544−548.(in Chinese)
    [8] 王丽萍, 朱新萍, 董双快, 等. 苏丹草与紫花苜蓿对新疆原油污染土壤的响应 [J]. 环境工程, 2016, 34(11):145−149.

    WANG L P, ZHU X P, DONG S K, et al. Response of sorghum sudanense and Medicago sativa growing on soil contaminated with crude oil in Xinjiang [J]. Environmental Engineering, 2016, 34(11): 145−149.(in Chinese)
    [9] 郭鹏, 李汉周, 刘松林, 等. 油田含油污泥土壤降解与修复试验研究 [J]. 石油与天然气化工, 2019, 48(6):105−110. doi: 10.3969/j.issn.1007-3426.2019.06.021

    GUO P, LI H Z, LIU S L, et al. Study on degradation and rehabilitation of oily sludge soil in oil field [J]. Chemical Engineering of Oil & Gas, 2019, 48(6): 105−110.(in Chinese) doi: 10.3969/j.issn.1007-3426.2019.06.021
    [10] 史德青, 张建, 祝威, 等. 胜利油田含油污泥的植物修复研究 [J]. 环境污染与防治, 2008, 30(8):52−55. doi: 10.3969/j.issn.1001-3865.2008.08.014

    SHI D Q, ZHANG J, ZHU W, et al. Phytoremediation of oily sludge of shengli oilfield [J]. Environmental Pollution & Control, 2008, 30(8): 52−55.(in Chinese) doi: 10.3969/j.issn.1001-3865.2008.08.014
    [11] 李文娆, 李小利, 张晓, 等. 甜高粱/紫花苜蓿对石油污染土壤的光合适应性研究 [J]. 河南大学学报(自然科学版), 2015, 45(3):327−333.

    LI W R, LI X L, ZHANG X, et al. Photosynthetic adaptability of sweet Sorghum and alfalfa to crude oil-polluted soils [J]. Journal of Henan University (Natural Science), 2015, 45(3): 327−333.(in Chinese)
    [12] ALI M H, KHAN M I, BASHIR S, et al. Biochar and Bacillus sp. MN54 assisted phytoremediation of diesel and plant growth promotion of maize in hydrocarbons contaminated soil [J]. Agronomy, 2021, 11(9): 1795. doi: 10.3390/agronomy11091795
    [13] ZHOU Q X, CAI Z, ZHANG Z N, et al. Ecological remediation of hydrocarbon contaminated soils with weed plant [J]. Journal of Resources and Ecology, 2011, 2(2): 97−105.
    [14] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
    [15] 沈萍, 陈向东. 微生物学实验[M]. 4版. 北京: 高等教育出版社, 2007.
    [16] 王如刚, 王敏, 牛晓伟, 等. 超声-索氏萃取-重量法测定土壤中总石油烃含量 [J]. 分析化学, 2010, 38(3):417−420.

    WANG R G, WANG M, NIU X W, et al. Determination of total petroleum hydrocarbons content in soil by ultrasonic-soxhlet extraction-gravimetric analysis [J]. Chinese Journal of Analytical Chemistry, 2010, 38(3): 417−420.(in Chinese)
    [17] 赵媛媛, 张万坤, 马慧, 等. 降解菌ZQ5与紫茉莉对芘污染土壤的联合修复 [J]. 环境工程学报, 2013, 7(7):2752−2756.

    ZHAO Y Y, ZHANG W K, MA H, et al. Microbial-phytoremediation of pyrene contaminated soil using pyrene-degrading strain ZQ5 with Mirabilis Jalapa [J]. Chinese Journal of Environmental Engineering, 2013, 7(7): 2752−2756.(in Chinese)
    [18] 刘永军, 曹中利, 贾海燕, 等. 黑麦草-不动杆菌组合体系对石油污染土壤的生物强化修复 [J]. 化工环保, 2018, 38(1):101−105. doi: 10.3969/j.issn.1006-1878.2018.01.018

    LIU Y J, CAO Z L, JIA H Y, et al. Enhanced bioremediation of petroleum-contaminated soil using ryegrass-acinetobacter combination system [J]. Environmental Protection of Chemical Industry, 2018, 38(1): 101−105.(in Chinese) doi: 10.3969/j.issn.1006-1878.2018.01.018
    [19] 欧阳威, 刘红, 于勇勇, 等. 高羊茅对微生物强化修复石油污染土壤影响的研究 [J]. 环境污染治理技术与设备, 2006(1):94−97.

    OUYANG W, LIU H, YU Y Y, et al. The combined effects of tall fescue(Festuca arundinace) phyto-remediation and bio-augmentation on treatment of oil-contaminated soil [J]. Techniques and Equipment for Environmental Pollution Control, 2006(1): 94−97.(in Chinese)
    [20] HOU J Y, LIU W X, WANG B B, et al. PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response [J]. Chemosphere, 2015, 138: 592−598. doi: 10.1016/j.chemosphere.2015.07.025
    [21] GLICK B R. Using soil bacteria to facilitate phytoremediation [J]. Biotechnology Advances, 2010, 28(3): 367−374. doi: 10.1016/j.biotechadv.2010.02.001
    [22] 胥九兵, 迟建国, 邱维忠, 等. 石油降解菌剂的研制及其在石油污染土壤修复中的应用 [J]. 生物加工过程, 2009, 7(6):21−24. doi: 10.3969/j.issn.1762-3678.2009.06.004

    XU J B, CHI J G, QIU W Z, et al. Application of bacterial agent capable of degrading petroleum for remediation of oil-contaminated soil [J]. Chinese Journal of Bioprocess Engineering, 2009, 7(6): 21−24.(in Chinese) doi: 10.3969/j.issn.1762-3678.2009.06.004
    [23] 王京秀, 张志勇, 万云洋, 等. 植物-微生物联合修复石油污染土壤的实验研究 [J]. 环境工程学报, 2014, 8(8):3454−3460.

    WANG J X, ZHANG Z Y, WAN Y Y, et al. Experimental study on plant-microbial remediation of oil-contaminated soil [J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3454−3460.(in Chinese)
    [24] 王洪. 多环芳烃污染农田土壤原位生物修复技术研究[D]. 沈阳: 东北大学, 2011.

    WANG H. Research on In-situ bioremediation for farm soil contaminated with polycyclic aromatic hydrocarbons[D]. Shenyang: Northeastern University, 2011. (in Chinese)
    [25] 刘魏魏, 尹睿, 林先贵, 等. 生物表面活性剂-微生物强化紫花苜蓿修复多环芳烃污染土壤 [J]. 环境科学, 2010, 31(4):1079−1084.

    LIU W W, YIN R, LIN X G, et al. Interaction of biosurfactant-microorganism to enhance phytoremediation of aged polycyclic aromatic hydrocarbons (PAHs) contaminated soils with alfalfa (Medicago sativa L. ) [J]. Environmental Science, 2010, 31(4): 1079−1084.(in Chinese)
    [26] 旷远文, 温达志, 钟传文, 等. 根系分泌物及其在植物修复中的作用 [J]. 植物生态学报, 2003, 27(5):709−717. doi: 10.3321/j.issn:1005-264X.2003.05.020

    KUANG Y W, WEN D Z, ZHONG C W, et al. Root exudates and their roles in phytoremediation [J]. Acta Phytoecologica Sinica, 2003, 27(5): 709−717.(in Chinese) doi: 10.3321/j.issn:1005-264X.2003.05.020
    [27] JONES D L, DARRAH P R. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere [J]. Plant and Soil, 1994, 166(2): 247−257. doi: 10.1007/BF00008338
    [28] MARSCHNER H, ROMHELD V, CAKMAK I. Root-induced changes of nutrient availability in the rhizosphere [J]. Journal of Plant Nutrition, 1987, 10(9): 1175−1184. doi: 10.1080/01904168709363645
    [29] LYNCH J M, WHIPPS J M. Substrate flow in the rhizosphere [J]. Plant and Soil, 1990, 129(1): 1−10. doi: 10.1007/BF00011685
    [30] YANG C H, CROWLEY D E. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status [J]. Applied and Environmental Microbiology, 2000, 66(1): 345−351. doi: 10.1128/AEM.66.1.345-351.2000
    [31] 王丽丽, 杨谦. 接种枯草芽孢杆菌和丛枝菌根真菌促进红三叶修复石油污染土壤 [J]. 江苏农业科学, 2016, 44(5):526−529.

    WANG L L, YANG Q. Inoculating Bacillus subtilis and arbuscular mycorrhizal fungi to promote remediation of oil contaminated soil by Trifolium repens [J]. Jiangsu Agricultural Sciences, 2016, 44(5): 526−529.(in Chinese)
    [32] 高乃媛, 刘宪斌, 赵兴茹. 石油烃对翅碱蓬生理特性的影响及植物-微生物联合降解 [J]. 环境工程学报, 2013, 7(4):1578−1582.

    GAO N Y, LIU X B, ZHAO X R. Influence of oil in soil on growth and physiological indexes of Suaeda heteroptera and plant-microbial remediation [J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1578−1582.(in Chinese)
    [33] 豆胜才. 红平红球菌KB1协同苜蓿降解石油烃的生态学效应[D]. 兰州: 兰州理工大学, 2020.

    DOU S C. Ecological effect of Rhodococcus erythropolis Kb1 on alfalfa degradation of petroleum hydrocarbons[D]. Lanzhou: Lanzhou University of Technology, 2020. (in Chinese)
    [34] 雒晓芳, 陈丽华, 王冬梅, 等. 不同石油浓度对两种作物生理生化的影响 [J]. 生物技术通报, 2016, 32(10):135−140.

    LUO X F, CHEN L H, WANG D M, et al. The influence for two corps physiological index by the different petroleum density [J]. Biotechnology Bulletin, 2016, 32(10): 135−140.(in Chinese)
    [35] 岳冰冰, 李鑫, 任芳菲, 等. 石油污染对紫花苜蓿部分生理指标的影响 [J]. 草业科学, 2011, 28(2):236−240. doi: 10.3969/j.issn.1001-0629.2011.02.013

    YUE B B, LI X, REN F F, et al. Effects of petroleum contamination on some of physiological indexes of alfalfa [J]. Pratacultural Science, 2011, 28(2): 236−240.(in Chinese) doi: 10.3969/j.issn.1001-0629.2011.02.013
    [36] HO C H, BANKS M K. Degradation of polycyclic aromatic hydrocarbons in the rhizosphere of Festuca arundinacea and associated microbial community changes [J]. Bioremediation Journal, 2006, 10(3): 93−104. doi: 10.1080/10889860600939609
    [37] BINET P, PORTAL J M, LEYVAL C. Dissipation of 3-6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass [J]. Soil Biology and Biochemistry, 2000, 32(14): 2011−2017. doi: 10.1016/S0038-0717(00)00100-0
    [38] ASLANTAŞ R, ÇAKMAKÇI R, ŞAHIN F. Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions [J]. Scientia Horticulturae, 2007, 111(4): 371−377. doi: 10.1016/j.scienta.2006.12.016
    [39] RYU C M, HU C H, LOCY R D, et al. Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana [J]. Plant and Soil, 2005, 268(1): 285−292. doi: 10.1007/s11104-004-0301-9
    [40] BELIMOV A A, DODD I C, HONTZEAS N, et al. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling [J]. New Phytologist, 2009, 181(2): 413−423. doi: 10.1111/j.1469-8137.2008.02657.x
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  518
  • HTML全文浏览量:  225
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 修回日期:  2022-05-27
  • 网络出版日期:  2022-11-29
  • 刊出日期:  2022-10-30

目录

    /

    返回文章
    返回