Cloning and Expression of VcILR1 in Blueberry
-
摘要:
目的 克隆蓝莓(Vaccinium spp)生长素酰胺水解酶基因VcILR1,分析该基因在蓝莓花、叶、茎、果和根中的表达模式和经过赤霉素处理的青果和成熟果两个时期的表达情况,为进一步探究该基因功能和蓝莓胚珠败育的机制提供依据。 方法 以蓝莓果实的cDNA为模板克隆得到VcILR1基因,利用ProtParam等工具对VcILR1进行生物信息学分析,利用qRT-PCR方法对VcILR1基因在蓝莓不同组织及赤霉素处理的青果和成熟果中的表达量进行分析。 结果 成功克隆到蓝莓VcILR1基因,该基因含976 bp的开放阅读框(ORF),编码325个氨基酸,有两个保守结构域,分别是Peptidase_M20和M20_dimer;编码蛋白的分子质量35364.20 kDa,理论等电点5.67,不稳定系数43.57,脂肪系数88.55,亲水性平均值−0.054,属于不稳定亲水性蛋白。系统进化树分析表明蓝莓VcILR1基因与山茶科植物的茶树(Camellia sinensis)生长素酰胺水解酶(IAA-Leucine Resistant 1-like,ILL)基因亲缘关系较近。qRT-PCR分析结果显示,VcILR1在蓝莓花、叶、茎、果和根中均有表达,在叶片中表达量最高,具有组织特异性;赤霉素处理能上调果实中VcILR1的表达。 结论 赤霉素处理后蓝莓青果和成熟果中VcILR1的表达量均显著增高,推测赤霉素处理能够促进蓝莓果实中生长素含量的提高,从而抑制胚珠发育,导致果实无籽。 Abstract:Objective VcILR1 of blueberry was cloned to analyze the expressions in various plant organs as well as after being treated by gibberellin to decipher its function and association with ovule abortion. Method Using the cDNA of blueberry as the template, VcILR1 was cloned by RT-PCR. Bioinformatics on the amino acid sequence was performed utilizing ProtParam and other relevant tools. Expressions of the gene in the flowers, leaves, stems, fruits, and roots of the plant as well as those in green and ripe fruits after being treated by gibberellin were determined. Result VcILR1 was successfully cloned and found to contain 976 bp ORF encoding 325 amino acids with two conserved structural domains, peptidase_M20 and M20_dimer, a molecular mass of 35364.20 kDa, a theoretical isoelectric point of 5.67, an instability coefficient of 43.57, and a lipid coefficient of 88.55. It was an unstable protein with a hydrophilic mean value of −0.054. A phylogenetic tree analysis showed the gene to closely relate to Camellia sinensis IAA-Leucine Resistant 1-like (ILL) gene. The qRT-PCR analysis revealed that the gene was expressed tissue-specific with the highest in the leaves, and that the gibberellin treatment up-regulated the expression in the fruits. Conclusion The expressions of VcILR1 in the blueberries significantly increased after being treated by gibberellin. It suggested that the plant hormone could stimulate IAA generation in the fruits and might also affect the ovule development. -
Key words:
- Blueberry /
- VcILR1 gene /
- gene cloning /
- seedless
-
图 6 蓝莓VcILR1氨基酸序列与其他物种ILL家族蛋白氨基酸序列对比分析
以相似性 50%为阈值,蓝色标注:相似性 ≥ 50%;粉色标注:相似性 ≥ 75%;黑色标注:相似性 ≥100%;红线、蓝线:保守结构域。
Figure 6. Amino acid sequence alignment of VcILR1 with other ILL family proteins
With threshold at 50 % similarity, blue indicates≥50%; pink, ≥75%; black, 100%; red and blue lines, conservative domains.
图 7 VcILR1在蓝莓不同部位(A)和赤霉素处理下的相对表达量(B)
A:不同的小写字母表示不同部位间差异显著(P<0.05)。B:青果CK——对照组青果期果实;青果GA——赤霉素处理组青果期果实;熟果CK——对照组成熟果实;熟果GA——赤霉素处理组成熟果实。不同小写字母表示同一阶段果实不同处理间差异显著(P<0.05)。
Figure 7. Expressions of VcILR1 in different organs of blueberry plant (A) and of that being treated by gibberellin (B)
A: Data with different lowercase letters indicate significant difference between organs (P<0.05); B: Green fruit CK—control green fruit stage; green fruit GA—gibberellin treated group green fruit stage; ripe fruit CK—control ripe fruit; ripe fruit GA—gibberellin treated group ripe fruit. Data with different lowercase letters indicate significant difference between treatments on fruits at the same growth stage (P<0.05).
表 1 VcILR1基因扩增引物信息
Table 1. VcILR1 primer information
引物名称Primer name 引物序列(5′-3′)primer sequence(5′-3′) VcILR1-F ATGGATGCTTTGCCCATTCAGGA VcILR1-R AGAATAAGAAATGGGGTTTCTTCC qRT-VcILR1-F GAGGAACAAGGCCAAGGTGCAA qRT-VcILR1-R CCTGGCCTTGCTGCAACAGT Actin-F AGGCTAACCGTGAGAAGATGAC Actin-R AGAGTCCAGCACGATTCCAG -
[1] 温靖, 关小莺, 徐玉娟, 等. 不同蓝莓品种品质特性研究 [J]. 热带作物学报, 2018, 39(9):1846−1855. doi: 10.3969/j.issn.1000-2561.2018.09.025WEN J, GUAN X Y, XU Y J, et al. Quality evaluation of different blueberry cultivars [J]. Chinese Journal of Tropical Crops, 2018, 39(9): 1846−1855.(in Chinese) doi: 10.3969/j.issn.1000-2561.2018.09.025 [2] 许文静, 陈昌琳, 邓莎, 等. 基于主成分分析和聚类分析的蓝莓品质综合评价 [J]. 食品工业科技, 2022, 43(13):311−319.XU W J, CHEN C L, DENG S, et al. Comprehensive evaluation of blueberry quality based on principal component analysis and cluster analysis [J]. Science and Technology of Food Industry, 2022, 43(13): 311−319.(in Chinese) [3] 周继芬, 兰武, 王军, 等. 蓝莓营养及独特保健功能研究 [J]. 北方园艺, 2020(21):138−145.ZHOU J F, LAN W, WANG J, et al. Nutritional ingredients of blueberry and research on its unique health-care function [J]. Northern Horticulture, 2020(21): 138−145.(in Chinese) [4] 杨海燕, 吴文龙, 闾连飞, 等. 蓝莓新品种‘寨选7号’ [J]. 南京林业大学学报(自然科学版), 2020, 44(3):227−228.YANG H Y, WU W L, LV L F, et al. A new cultivar of blueberry’Zhaixuan 7’ [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(3): 227−228.(in Chinese) [5] 张西臣. 临沂适种果树栽培技术新编[M]. 济南: 山东科学技术出版社, 2013. [6] 王小敏, 赵慧芳, 吴文龙, 等. 蓝莓不同品种果实与种子特性的比较分析 [J]. 北方园艺, 2021(20):47−52.WANG X M, ZHAO H F, WU W L, et al. Comparison and analysis of fruit and seed characteristics of different blueberry cultivars [J]. Northern Horticulture, 2021(20): 47−52.(in Chinese) [7] 吕真真, 焦中高, 刘慧, 等. 不同制汁方式对石榴酒品质的影响 [J]. 果树学报, 2020, 37(12):1941−1952. doi: 10.13925/j.cnki.gsxb.20200212LÜ Z Z, JIAO Z G, LIU H, et al. Effect of different juicing methods on quality of pomegranate wines [J]. Journal of Fruit Science, 2020, 37(12): 1941−1952.(in Chinese) doi: 10.13925/j.cnki.gsxb.20200212 [8] 周琪. GA3处理对葡萄果实水分及发育的调控机理研究[D]. 兰州: 甘肃农业大学, 2021.ZHOU Q. Regulation Mechanism of GA3 treatments on Water and Development of Grape(V. vinifera L.)berry[D]. Lanzhou: Gansu Agricultural University, 2021. (in Chinese) [9] WANG J Z, GUO X L, XIAO Q, et al. Auxin efflux controls orderly nucellar degeneration and expansion of the female gametophyte in Arabidopsis [J]. The New Phytologist, 2021, 230(6): 2261−2274. doi: 10.1111/nph.17152 [10] 付欣, 李天来, 许涛, 等. 番茄离体花柄脱落过程中生长素酰胺水解酶家族的序列特征及表达分析[EB/OL]. 北京: 中国科技论文在线(2016-12-29). http://www.paper.edu.cn/releasepaper/content/201612-593.FU X, LI T L, XU T, et al. Sequence characteristics and expression analysis of IAA-leucine resistant1-like hydrolase genes on tomato pedicel abscission in vitro. [EB/OL] Beijing: China Science and Technology Papers Online(2016-12-29). http://www.paper.edu.cn/releasepaper/content/201612-593. (in Chinese) [11] CAMPANELLA J J, SMITH S M, LEIBU D, et al. The auxin conjugate hydrolase family of Medicago truncatula and their expression during the interaction with two symbionts [J]. Journal of Plant Growth Regulation, 2008, 27(1): 26−38. doi: 10.1007/s00344-007-9027-2 [12] WANG X B, MENG J R, DENG L, et al. Diverse functions of IAA-leucine resistant PpILR1 provide a genic basis for auxin-ethylene crosstalk during peach fruit ripening [J]. Frontiers in Plant Science, 2021, 12: 655758. doi: 10.3389/fpls.2021.655758 [13] CHEN Y, XU Z H, SHEN Q, et al. Floral organ-specific proteome profiling of the floral ornamental orchid (Cymbidium goeringii) reveals candidate proteins related to floral organ development [J]. Botanical Studies, 2021, 62(1): 23. doi: 10.1186/s40529-021-00330-9 [14] DU H Q, SHI Y H, LI D F, et al. Screening and identification of key genes regulating fall dormancy in alfalfa leaves [J]. PLoS One, 2017, 12(12): e0188964. doi: 10.1371/journal.pone.0188964 [15] LI Z F, ZHANG X G, ZHAO K K, et al. Comprehensive transcriptome analyses reveal candidate genes for variation in seed size/weight during peanut (Arachis hypogaea L. ) domestication [J]. Frontiers in Plant Science, 2021, 12: 666483. doi: 10.3389/fpls.2021.666483 [16] FU X, SHI Z H, JIANG Y, et al. A family of auxin conjugate hydrolases from Solanum lycopersicum and analysis of their roles in flower pedicel abscission [J]. BMC Plant Biology, 2019, 19(1): 233. doi: 10.1186/s12870-019-1840-9 [17] YU R G, WANG Y, XU L, et al. Transcriptome profiling of root microRNAs reveals novel insights into taproot thickening in radish (Raphanus sativus L. ) [J]. BMC Plant Biology, 2015, 15: 30. doi: 10.1186/s12870-015-0427-3 [18] D’IPPOLITO S, VANKOVA R, JOOSTEN M H A J, et al. Knocking down expression of the auxin-amidohydrolase IAR3 alters defense responses in Solanaceae family plants [J]. Plant Science, 2016, 253: 31−39. doi: 10.1016/j.plantsci.2016.09.008 [19] WANG X M, WU Y Q, HU L C, et al. Elucidation of the mechanism underlying seedless blueberry formation after GA3 treatment based on the phenotype, physiology, metabolism and transcriptome [J]. Scientia Horticulturae, 2023, 311: 111781. doi: 10.1016/j.scienta.2022.111781 [20] DE JONG M, WOLTERS-ARTS M, FERON R, et al. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development [J]. The Plant Journal:for Cell and Molecular Biology, 2009, 57(1): 160−170. doi: 10.1111/j.1365-313X.2008.03671.x [21] TANG N, DENG W, HU G J, et al. Transcriptome profiling reveals the regulatory mechanism underlying pollination dependent and parthenocarpic fruit set mainly mediated by auxin and gibberellin [J]. PLoS One, 2015, 10(4): e0125355. doi: 10.1371/journal.pone.0125355 [22] 张维洵, 潘小勇, 沈红斌. 基于深度学习与领域规则建模的蛋白质信号肽及其切割位点预测 [J]. 南京理工大学学报, 2020, 44(3):278−287. doi: 10.14177/j.cnki.32-1397n.2020.44.03.004ZHANG W X, PAN X Y, SHEN H B. Predicting protein signal peptides and their cleavage sites based on deep learning and domain rule modeling [J]. Journal of Nanjing University of Science and Technology, 2020, 44(3): 278−287.(in Chinese) doi: 10.14177/j.cnki.32-1397n.2020.44.03.004 [23] WEIJERS D, NEMHAUSER J, YANG Z B. Auxin: Small molecule, big impact [J]. Journal of Experimental Botany, 2018, 69(2): 133−136. doi: 10.1093/jxb/erx463 [24] ADAMOWSKI M, FRIML J. PIN-dependent auxin transport: Action, regulation, and evolution [J]. The Plant Cell, 2015, 27(1): 20−32. doi: 10.1105/tpc.114.134874 [25] BLAKESLEE J J, PEER W A, MURPHY A S. Auxin transport [J]. Current Opinion in Plant Biology, 2005, 8(5): 494−500. doi: 10.1016/j.pbi.2005.07.014 [26] DAVIES R T, GOETZ D H, LASSWELL J, et al. IAR3 encodes an auxin conjugate hydrolase from Arabidopsis [J]. The Plant Cell, 1999, 11(3): 365−376. doi: 10.1105/tpc.11.3.365