• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蓝莓VcILR1基因的克隆与表达分析

胡丽超 王小敏 王鑫 吴雅琼 吴文龙 闾连飞 李维林

胡丽超,王小敏,王鑫,等. 蓝莓VcILR1基因的克隆与表达分析 [J]. 福建农业学报,2023,38(2):151−157 doi: 10.19303/j.issn.1008-0384.2023.02.004
引用本文: 胡丽超,王小敏,王鑫,等. 蓝莓VcILR1基因的克隆与表达分析 [J]. 福建农业学报,2023,38(2):151−157 doi: 10.19303/j.issn.1008-0384.2023.02.004
HU L C, WANG X M, WANG X, et al. Cloning and Expression of VcILR1 in Blueberry [J]. Fujian Journal of Agricultural Sciences,2023,38(2):151−157 doi: 10.19303/j.issn.1008-0384.2023.02.004
Citation: HU L C, WANG X M, WANG X, et al. Cloning and Expression of VcILR1 in Blueberry [J]. Fujian Journal of Agricultural Sciences,2023,38(2):151−157 doi: 10.19303/j.issn.1008-0384.2023.02.004

蓝莓VcILR1基因的克隆与表达分析

doi: 10.19303/j.issn.1008-0384.2023.02.004
基金项目: 江苏省种业振兴揭榜挂帅项目(JBGS〔2021〕021);江苏省科技厅现代农业项目(BE2022372)
详细信息
    作者简介:

    胡丽超(1997−),男,硕士研究生,主要从事蓝莓栽培育种与分子生物学研究(E-mail:1547694559@qq.com

    通讯作者:

    王小敏(1980−),女,硕士,副研究员,主要从事黑莓、蓝莓等小浆果栽培育种与分子生物学研究(E-mail:xmwang525@163.com

    李维林(1966−),男,博士,研究员,主要从事黑莓、蓝莓等小浆果栽培育种及生理生化研究(E-mail:wlli@njfu.edu.cn

  • 中图分类号: Q785

Cloning and Expression of VcILR1 in Blueberry

  • 摘要:   目的  克隆蓝莓(Vaccinium spp)生长素酰胺水解酶基因VcILR1,分析该基因在蓝莓花、叶、茎、果和根中的表达模式和经过赤霉素处理的青果和成熟果两个时期的表达情况,为进一步探究该基因功能和蓝莓胚珠败育的机制提供依据。  方法  以蓝莓果实的cDNA为模板克隆得到VcILR1基因,利用ProtParam等工具对VcILR1进行生物信息学分析,利用qRT-PCR方法对VcILR1基因在蓝莓不同组织及赤霉素处理的青果和成熟果中的表达量进行分析。  结果  成功克隆到蓝莓VcILR1基因,该基因含976 bp的开放阅读框(ORF),编码325个氨基酸,有两个保守结构域,分别是Peptidase_M20和M20_dimer;编码蛋白的分子质量35364.20 kDa,理论等电点5.67,不稳定系数43.57,脂肪系数88.55,亲水性平均值−0.054,属于不稳定亲水性蛋白。系统进化树分析表明蓝莓VcILR1基因与山茶科植物的茶树(Camellia sinensis)生长素酰胺水解酶(IAA-Leucine Resistant 1-likeILL)基因亲缘关系较近。qRT-PCR分析结果显示,VcILR1在蓝莓花、叶、茎、果和根中均有表达,在叶片中表达量最高,具有组织特异性;赤霉素处理能上调果实中VcILR1的表达。  结论  赤霉素处理后蓝莓青果和成熟果中VcILR1的表达量均显著增高,推测赤霉素处理能够促进蓝莓果实中生长素含量的提高,从而抑制胚珠发育,导致果实无籽。
  • 图  1  VcILR1基因PCR扩增结果

    M:Marker DL2000;1–2:无效条带;3–4:目的条带ILR1

    Figure  1.  PCR amplification of VcILR1

    M: Marker DL2000; 1-2: Invalid strips; 3-4: Target strip ILR1.

    图  2  VcILR1蛋白保守结构域分析

    Figure  2.  Analysis on conserved domain of VcILR1 protein

    图  3  VcILR1蛋白磷酸化位点预测(A)和蛋白亲水/疏水性预测(B)

    Figure  3.  Predicted phosphorylation sites of VcILR1 protein (A) and protein hydrophilicity/hydrophobicity (B)

    图  4  VcILR1蛋白的二级结构预测(A)和三级结构预测(B)

    Figure  4.  Predicted secondary structure (A) and tertiary structure (B) of VcILR1 protein

    图  5  蓝莓VcILR1基因与其他物种ILL家族基因的系统发育树

    Figure  5.  Phylogenetic trees of VcILR1 and ILL familial genes of other species

    图  6  蓝莓VcILR1氨基酸序列与其他物种ILL家族蛋白氨基酸序列对比分析

    以相似性 50%为阈值,蓝色标注:相似性 ≥ 50%;粉色标注:相似性 ≥ 75%;黑色标注:相似性 ≥100%;红线、蓝线:保守结构域。

    Figure  6.  Amino acid sequence alignment of VcILR1 with other ILL family proteins

    With threshold at 50 % similarity, blue indicates≥50%; pink, ≥75%; black, 100%; red and blue lines, conservative domains.

    图  7  VcILR1在蓝莓不同部位(A)和赤霉素处理下的相对表达量(B)

    A:不同的小写字母表示不同部位间差异显著(P<0.05)。B:青果CK——对照组青果期果实;青果GA——赤霉素处理组青果期果实;熟果CK——对照组成熟果实;熟果GA——赤霉素处理组成熟果实。不同小写字母表示同一阶段果实不同处理间差异显著(P<0.05)。

    Figure  7.  Expressions of VcILR1 in different organs of blueberry plant (A) and of that being treated by gibberellin (B)

    A: Data with different lowercase letters indicate significant difference between organs (P<0.05); B: Green fruit CK—control green fruit stage; green fruit GA—gibberellin treated group green fruit stage; ripe fruit CK—control ripe fruit; ripe fruit GA—gibberellin treated group ripe fruit. Data with different lowercase letters indicate significant difference between treatments on fruits at the same growth stage (P<0.05).

    表  1  VcILR1基因扩增引物信息

    Table  1.   VcILR1 primer information

    引物名称Primer name引物序列(5′-3′)primer sequence(5′-3′)
    VcILR1-FATGGATGCTTTGCCCATTCAGGA
    VcILR1-RAGAATAAGAAATGGGGTTTCTTCC
    qRT-VcILR1-FGAGGAACAAGGCCAAGGTGCAA
    qRT-VcILR1-RCCTGGCCTTGCTGCAACAGT
    Actin-FAGGCTAACCGTGAGAAGATGAC
    Actin-RAGAGTCCAGCACGATTCCAG
    下载: 导出CSV
  • [1] 温靖, 关小莺, 徐玉娟, 等. 不同蓝莓品种品质特性研究 [J]. 热带作物学报, 2018, 39(9):1846−1855. doi: 10.3969/j.issn.1000-2561.2018.09.025

    WEN J, GUAN X Y, XU Y J, et al. Quality evaluation of different blueberry cultivars [J]. Chinese Journal of Tropical Crops, 2018, 39(9): 1846−1855.(in Chinese) doi: 10.3969/j.issn.1000-2561.2018.09.025
    [2] 许文静, 陈昌琳, 邓莎, 等. 基于主成分分析和聚类分析的蓝莓品质综合评价 [J]. 食品工业科技, 2022, 43(13):311−319.

    XU W J, CHEN C L, DENG S, et al. Comprehensive evaluation of blueberry quality based on principal component analysis and cluster analysis [J]. Science and Technology of Food Industry, 2022, 43(13): 311−319.(in Chinese)
    [3] 周继芬, 兰武, 王军, 等. 蓝莓营养及独特保健功能研究 [J]. 北方园艺, 2020(21):138−145.

    ZHOU J F, LAN W, WANG J, et al. Nutritional ingredients of blueberry and research on its unique health-care function [J]. Northern Horticulture, 2020(21): 138−145.(in Chinese)
    [4] 杨海燕, 吴文龙, 闾连飞, 等. 蓝莓新品种‘寨选7号’ [J]. 南京林业大学学报(自然科学版), 2020, 44(3):227−228.

    YANG H Y, WU W L, LV L F, et al. A new cultivar of blueberry’Zhaixuan 7’ [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(3): 227−228.(in Chinese)
    [5] 张西臣. 临沂适种果树栽培技术新编[M]. 济南: 山东科学技术出版社, 2013.
    [6] 王小敏, 赵慧芳, 吴文龙, 等. 蓝莓不同品种果实与种子特性的比较分析 [J]. 北方园艺, 2021(20):47−52.

    WANG X M, ZHAO H F, WU W L, et al. Comparison and analysis of fruit and seed characteristics of different blueberry cultivars [J]. Northern Horticulture, 2021(20): 47−52.(in Chinese)
    [7] 吕真真, 焦中高, 刘慧, 等. 不同制汁方式对石榴酒品质的影响 [J]. 果树学报, 2020, 37(12):1941−1952. doi: 10.13925/j.cnki.gsxb.20200212

    LÜ Z Z, JIAO Z G, LIU H, et al. Effect of different juicing methods on quality of pomegranate wines [J]. Journal of Fruit Science, 2020, 37(12): 1941−1952.(in Chinese) doi: 10.13925/j.cnki.gsxb.20200212
    [8] 周琪. GA3处理对葡萄果实水分及发育的调控机理研究[D]. 兰州: 甘肃农业大学, 2021.

    ZHOU Q. Regulation Mechanism of GA3 treatments on Water and Development of Grape(V. vinifera L.)berry[D]. Lanzhou: Gansu Agricultural University, 2021. (in Chinese)
    [9] WANG J Z, GUO X L, XIAO Q, et al. Auxin efflux controls orderly nucellar degeneration and expansion of the female gametophyte in Arabidopsis [J]. The New Phytologist, 2021, 230(6): 2261−2274. doi: 10.1111/nph.17152
    [10] 付欣, 李天来, 许涛, 等. 番茄离体花柄脱落过程中生长素酰胺水解酶家族的序列特征及表达分析[EB/OL]. 北京: 中国科技论文在线(2016-12-29). http://www.paper.edu.cn/releasepaper/content/201612-593.

    FU X, LI T L, XU T, et al. Sequence characteristics and expression analysis of IAA-leucine resistant1-like hydrolase genes on tomato pedicel abscission in vitro. [EB/OL] Beijing: China Science and Technology Papers Online(2016-12-29). http://www.paper.edu.cn/releasepaper/content/201612-593. (in Chinese)
    [11] CAMPANELLA J J, SMITH S M, LEIBU D, et al. The auxin conjugate hydrolase family of Medicago truncatula and their expression during the interaction with two symbionts [J]. Journal of Plant Growth Regulation, 2008, 27(1): 26−38. doi: 10.1007/s00344-007-9027-2
    [12] WANG X B, MENG J R, DENG L, et al. Diverse functions of IAA-leucine resistant PpILR1 provide a genic basis for auxin-ethylene crosstalk during peach fruit ripening [J]. Frontiers in Plant Science, 2021, 12: 655758. doi: 10.3389/fpls.2021.655758
    [13] CHEN Y, XU Z H, SHEN Q, et al. Floral organ-specific proteome profiling of the floral ornamental orchid (Cymbidium goeringii) reveals candidate proteins related to floral organ development [J]. Botanical Studies, 2021, 62(1): 23. doi: 10.1186/s40529-021-00330-9
    [14] DU H Q, SHI Y H, LI D F, et al. Screening and identification of key genes regulating fall dormancy in alfalfa leaves [J]. PLoS One, 2017, 12(12): e0188964. doi: 10.1371/journal.pone.0188964
    [15] LI Z F, ZHANG X G, ZHAO K K, et al. Comprehensive transcriptome analyses reveal candidate genes for variation in seed size/weight during peanut (Arachis hypogaea L. ) domestication [J]. Frontiers in Plant Science, 2021, 12: 666483. doi: 10.3389/fpls.2021.666483
    [16] FU X, SHI Z H, JIANG Y, et al. A family of auxin conjugate hydrolases from Solanum lycopersicum and analysis of their roles in flower pedicel abscission [J]. BMC Plant Biology, 2019, 19(1): 233. doi: 10.1186/s12870-019-1840-9
    [17] YU R G, WANG Y, XU L, et al. Transcriptome profiling of root microRNAs reveals novel insights into taproot thickening in radish (Raphanus sativus L. ) [J]. BMC Plant Biology, 2015, 15: 30. doi: 10.1186/s12870-015-0427-3
    [18] D’IPPOLITO S, VANKOVA R, JOOSTEN M H A J, et al. Knocking down expression of the auxin-amidohydrolase IAR3 alters defense responses in Solanaceae family plants [J]. Plant Science, 2016, 253: 31−39. doi: 10.1016/j.plantsci.2016.09.008
    [19] WANG X M, WU Y Q, HU L C, et al. Elucidation of the mechanism underlying seedless blueberry formation after GA3 treatment based on the phenotype, physiology, metabolism and transcriptome [J]. Scientia Horticulturae, 2023, 311: 111781. doi: 10.1016/j.scienta.2022.111781
    [20] DE JONG M, WOLTERS-ARTS M, FERON R, et al. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development [J]. The Plant Journal:for Cell and Molecular Biology, 2009, 57(1): 160−170. doi: 10.1111/j.1365-313X.2008.03671.x
    [21] TANG N, DENG W, HU G J, et al. Transcriptome profiling reveals the regulatory mechanism underlying pollination dependent and parthenocarpic fruit set mainly mediated by auxin and gibberellin [J]. PLoS One, 2015, 10(4): e0125355. doi: 10.1371/journal.pone.0125355
    [22] 张维洵, 潘小勇, 沈红斌. 基于深度学习与领域规则建模的蛋白质信号肽及其切割位点预测 [J]. 南京理工大学学报, 2020, 44(3):278−287. doi: 10.14177/j.cnki.32-1397n.2020.44.03.004

    ZHANG W X, PAN X Y, SHEN H B. Predicting protein signal peptides and their cleavage sites based on deep learning and domain rule modeling [J]. Journal of Nanjing University of Science and Technology, 2020, 44(3): 278−287.(in Chinese) doi: 10.14177/j.cnki.32-1397n.2020.44.03.004
    [23] WEIJERS D, NEMHAUSER J, YANG Z B. Auxin: Small molecule, big impact [J]. Journal of Experimental Botany, 2018, 69(2): 133−136. doi: 10.1093/jxb/erx463
    [24] ADAMOWSKI M, FRIML J. PIN-dependent auxin transport: Action, regulation, and evolution [J]. The Plant Cell, 2015, 27(1): 20−32. doi: 10.1105/tpc.114.134874
    [25] BLAKESLEE J J, PEER W A, MURPHY A S. Auxin transport [J]. Current Opinion in Plant Biology, 2005, 8(5): 494−500. doi: 10.1016/j.pbi.2005.07.014
    [26] DAVIES R T, GOETZ D H, LASSWELL J, et al. IAR3 encodes an auxin conjugate hydrolase from Arabidopsis [J]. The Plant Cell, 1999, 11(3): 365−376. doi: 10.1105/tpc.11.3.365
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  519
  • HTML全文浏览量:  191
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-04
  • 修回日期:  2022-10-21
  • 网络出版日期:  2023-03-28
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回