Morphological and SRAP Markers-based Genetic Diversity Determination on Phaseolus lunatus L. Germplasms
-
摘要:
目的 探明莱豆种质资源遗传多样性和亲缘关系,为莱豆种质资源优良基因深度发掘和新品种选育提供科学依据。 方法 利用形态标记和SRAP分子标记两种方法对22份莱豆资源的26个数量性状和 18个质量性状进行测定、分析。 结果 筛选出的28对SRAP引物扩增多态性条带158条,平均多态性比率为77.75%。两种标记方法聚类结果显示,根据莱豆荚果大小可以将22份莱豆资源分为三大类群体。其中,“上横山10-2-6”和“下横山10-3-3”亲缘关系较近,推测可能存在频繁的基因交流。 结论 22份莱豆资源遗传多样性丰富,形态标记和SRAP分子标记两种聚类方法基本支持根据荚果大小划分莱豆资源,为莱豆种质资源的创新利用奠定基础。 Abstract:Objective Genetic diversity and relationship of Phaseolus lunatus L. germplasms were determined using the morphological and SRAP markers. Method Twenty-six quantitative and 18 quality traits of 22 lima bean germplasms were analyzed based on the morphological as well as the SRAP molecular markers. Result Twenty-eight pairs of SRAP primers were selected to obtain 158 amplified polymorphic bands with an average polymorphism ratio of 77.75%. The two methods applying different markers clustered the 22 varieties into 3 categories. Genetically, Shanghengshan10-2-6 and Xiahengshan 10-3-3 were relatively close. They might have gone through numerous gene exchanges in the past. Conclusion The 22 lima bean germplasms were rich in genetic diversity. The morphological and SRAP molecular markers-based clustering essentially agreed with the classification by the pod size. -
表 1 供试莱豆种质资源
Table 1. P. lunatus germplasms studied
编号 Code 材料名称 Name 原产地 Orign 编号 Code 材料名称 Name 原产地 Orign 1 铁灶本 莆田市城厢区霞林办铁灶村 12 DJ-11-3-1-1 莆田市仙游县大济镇 2 莆1046 莆田市荔城区新度镇渠桥村 13 FT-08-2-5-3 莆田市仙游县枫亭镇 3 JD-1603 莆田市荔城区黄石镇清前村 14 DW17-1-5 莆田市仙游县度尾镇 4 莆莱1号 莆田市农科所选育 15 14LD-5-2-7 莆田市仙游县赖店镇 5 龙莱1号 龙岩市龙津作物所选育 16 DW15-6-1 莆田市仙游县度尾镇 6 QC12-1-17-3 莆田市荔城区新度镇青垞村 17 小莱豆16-5-6 莆田市城厢区常太镇 7 QC12-2-6-5 莆田市荔城区新度镇青垞村 18 小莱豆16-21-11 莆田市城厢区常太镇 8 横山10-1—1 莆田市荔城区新度镇横山村 19 中莱16-12-5 莆田市新度镇渠桥村 9 上横山10-2-6 莆田市荔城区新度镇横山村 20 武平黑花籽扁豆 龙岩市武平县 10 下横山10-3-3 莆田市荔城区新度镇横山村 21 PLQQ-08-2-6 莆田市荔城区新度镇渠桥村 11 新周13-6-2-7 莆田市仙游县园庄镇新周村 22 PLQQ-08-5-3 莆田市荔城区新度镇渠桥村 表 2 SRAP分析所用的引物序列
Table 2. Primer sequences used in SRAP analysis
编号Code 上游引物序列(5′-3′)Upstream primer sequences 下游引物序列(5′-3′)Downstream primer sequences me1em20 TGAGTCCAAACCGGATA GACTGCGTACGAATTCAG me2em13 TGAGTCCAAACCGGAGC GACTGCGTACGAATTGGT me2em20 TGAGTCCAAACCGGAGC GACTGCGTACGAATTCAG me4em2 TGAGTCCAAACCGGACC GACTGCGTACGAATTTGC me4em4 TGAGTCCAAACCGGACC GACTGCGTACGAATTTGA me4em11 TGAGTCCAAACCGGACC GACTGCGTACGAATTTCG me5em2 TGAGTCCAAACCGGAAG GACTGCGTACGAATTTGC me5em8 TGAGTCCAAACCGGAAG GACTGCGTACGAATTCTG me5em13 TGAGTCCAAACCGGAAG GACTGCGTACGAATTGGT me6em2 TGAGTCCAAACCGGTAA GACTGCGTACGAATTTGC me6em3 TGAGTCCAAACCGGTAA GACTGCGTACGAATTGAC me7em12 TGAGTCCAAACCGGTCC GACTGCGTACGAATTGTC me8em2 TGAGTCCAAACCGGTGC GACTGCGTACGAATTTGC me8em4 TGAGTCCAAACCGGTGC GACTGCGTACGAATTTGC me8em11 TGAGTCCAAACCGGTGC GACTGCGTACGAATTTCG me10em2 TGGGGACAACCCGGCTT GACTGCGTACGAATTTGC me10em3 TGGGGACAACCCGGCTT TGAGTCCAAACCGGAAT me10em4 TGGGGACAACCCGGCTT TGAGTCCAAACCGGACC me11em4 TGGGGACAACCCGGTTC TGAGTCCAAACCGGACC me11em7 TGGGGACAACCCGGTTC GACTGCGTACGAATTATG me12em4 TGGGGACAACCCGGTAG GACTGCGTACGAATTTGA me13em1 TGGGGACAACCCGGTCA GACTGCGTACGAATTAAT me13em3 TGGGGACAACCCGGTCA TGAGTCCAAACCGGAAT me13em9 TGGGGACAACCCGGTCA GACTGCGTACGAATTACG me13em14 TGGGGACAACCCGGTCA GACTGCGTACGAATTCAG me13em15 TGGGGACAACCCGGTCA GACTGCGTACGAATTCTG me14em1 TGGGGACAACCCGGTGT GACTGCGTACGAATTAAT me14em3 TGGGGACAACCCGGTGT GACTGCGTACGAATTGAC 表 3 莱豆种质资源数量性状
Table 3. Quantifiable traits of P. lunatus
品种编号Variety code 第一对真叶First pair of true leaves 顶端小叶Top lobule 主蔓粗Main stem diamete/cm 鲜荚fresh pods 鲜豆百粒重hundred-grain weight of frsh bean/g 干荚Dry pods 干豆百粒重hundred-grain weight of dry bean/g 真叶长True leaf length/cm 真叶宽True leaf width/cm 叶长Leaf length/cm 叶宽Leaf width/cm 叶柄长Petiole length/cm 叶柄粗Petiole thickness/mm 荚长Pod length/cm 荚宽Pod width/cm 荚重Pod weight/g 荚粒数pod seednumber 荚长Pod length/cm 荚宽Pod length/cm 荚重Pod weight/g 荚粒数pod seed number 1 9.39 9.10 11.18 7.70 9.10 2.33 1.23 10.74 2.79 12.66 2.61 312.21 10.78 2.50 4.92 2.40 155.08 2 7.75 6.43 10.82 7.02 9.47 2.22 1.39 10.14 2.75 13.45 2.62 349.17 11.15 2.32 5.55 2.60 163.73 3 8.48 8.08 10.72 6.22 10.32 2.00 1.30 10.69 2.56 12.81 2.53 313.80 15.69 2.24 5.08 2.50 155.24 4 8.79 7.31 12.11 6.87 11.27 2.04 1.47 11.44 2.92 19.17 3.00 374.30 11.33 2.41 7.56 2.50 175.80 5 8.74 8.18 10.37 6.58 9.98 2.00 1.63 10.14 2.63 14.42 2.50 356.62 9.78 2.49 5.86 2.60 167.58 6 8.57 8.83 10.38 6.12 8.95 1.84 1.26 10.77 2.72 11.49 2.35 311.38 11.68 2.37 5.62 2.90 150.83 7 8.78 9.19 10.02 5.67 8.92 1.83 1.33 10.44 2.69 10.69 2.45 330.77 11.61 2.51 5.62 3.00 136.77 8 7.21 8.07 12.27 6.92 11.21 1.97 1.51 11.88 2.66 15.06 2.88 373.22 11.63 2.38 6.80 3.00 179.93 9 10.48 9.54 10.44 6.32 9.59 2.51 1.34 11.50 2.55 12.50 2.80 320.50 10.29 2.07 4.43 2.50 136.68 10 10.17 9.20 11.61 7.28 9.93 1.99 1.35 10.42 2.94 11.19 2.40 333.05 10.10 2.38 4.05 2.40 129.67 11 9.41 8.53 12.15 6.67 10.11 1.99 1.69 10.57 2.70 11.38 2.55 333.33 11.19 2.39 5.56 2.80 160.96 12 8.77 9.03 11.62 6.47 11.36 1.97 1.89 11.18 2.76 12.24 2.63 364.39 11.33 2.60 6.36 3.00 170.63 13 8.01 7.30 10.68 6.36 10.20 1.94 1.31 11.06 2.58 13.11 2.80 307.26 10.50 2.26 5.24 2.50 165.52 14 8.40 7.77 11.75 6.78 10.32 1.88 1.66 11.34 3.00 14.17 2.42 363.45 11.12 2.42 5.19 2.50 157.92 15 9.43 8.01 12.45 7.09 11.12 1.93 1.37 12.56 2.82 17.17 2.90 335.03 11.63 2.28 5.37 2.45 161.52 16 5.28 8.26 11.31 6.25 9.23 1.90 1.63 11.20 2.66 14.09 2.60 351.20 10.07 2.24 7.29 2.40 136.75 17 10.23 7.04 6.50 5.67 6.25 1.48 0.92 7.25 1.47 4.71 2.85 104.61 7.53 1.47 2.61 2.85 55.19 18 9.79 7.58 6.94 6.08 9.37 1.69 1.03 7.23 1.44 4.67 3.05 99.61 7.39 1.45 2.66 2.80 57.20 19 9.04 7.16 6.78 5.54 6.33 1.40 1.01 7.09 1.66 4.32 2.70 93.97 7.30 1.65 2.29 2.75 54.67 20 9.47 7.99 9.24 6.79 8.89 1.71 1.02 7.56 1.93 6.47 3.30 128.35 6.81 1.55 2.26 2.70 57.59 21 8.93 8.62 10.88 6.35 12.61 2.28 1.77 12.06 2.74 17.62 2.80 417.11 11.73 2.49 5.93 2.60 167.46 22 8.98 8.38 11.19 7.10 12.54 2.15 1.85 13.10 2.77 19.62 3.09 411.34 12.02 2.33 6.72 3.00 169.70 表 4 28对引物的扩增结果
Table 4. Amplicon of 28 primer pairs
引物组合Primer combination 总带数Total bands 差异带Difference band 基本带Basic bands 多态性Polymorphism/ % ME2EM13 9 9 0 100.0 ME4EM4 4 2 2 50.0 ME5EM8 8 8 0 100.0 ME5EM13 9 8 1 88.89 ME6EM2 7 5 2 71.43 ME6EM3 10 10 0 100.0 ME7EM12 5 4 1 80.0 ME8EM2 6 3 3 50.0 ME10EM2 5 5 0 100.0 ME10EM3 3 2 1 66.67 ME10EM4 3 3 0 100.0 ME11EM4 6 5 1 83.33 ME11EM7 6 6 0 100.0 ME8EM11 5 4 1 80.0 ME12EM4 6 4 2 66.67 ME13EM1 8 5 3 62.5 ME13EM3 5 4 1 80.0 ME13EM9 4 4 0 100.0 ME13EM14 4 4 0 100.0 ME13EM15 4 1 3 25.0 ME14EM1 4 2 2 50.0 ME14EM3 6 4 2 66.67 ME4EM2 5 4 1 80.0 ME4EM11 5 3 2 60.0 ME5EM2 5 4 1 80.0 ME8EM4 7 6 1 85.71 ME2EM20 5 5 0 100.0 ME13EM5 4 2 2 50.0 合计Total 158 126 32 平均 Mean 5.64 4.5 1.14 77.75 -
[1] BAUDOIN J P , ROCHA O , DEGREE J, et al. Ecogeography, demography, diversity and conservation of Phaseolus lunatus L. in the Central Valley of Costa Rica[M]. systematic&ecogeographicstudies on crop genepools, 2004: 1-94. [2] 彭葵, 李锦鸿, 李育军, 等. 华南地区利马豆绿色高产栽培技术 [J]. 长江蔬菜, 2020(22):40−42.PENG K, LI J H, LI Y J, et al. Green and high-yield cultivation techniques for Lima bean in South China [J]. Journal of Changjiang Vegetables, 2020(22): 40−42.(in Chinese) [3] 张德纯. 莱豆史话 [J]. 中国蔬菜, 2009(11):15.ZHANG D C. H. Vegetable history of Lima bean [J]. China Vegetables, 2009(11): 15.(in Chinese) [4] 郭媛贞, 黄强, 陈芝, 等. 优质莱豆新品种“莆莱1号”的选育 [J]. 福建农业学报, 2014, 29(3):247−249. doi: 10.3969/j.issn.1008-0384.2014.03.010GUO Y Z, HUANG Q, CHEN Z, et al. Breeding of qew Lima bean cultivar pulai No. 1 [J]. Fujian Journal of Agricultural Sciences, 2014, 29(3): 247−249.(in Chinese) doi: 10.3969/j.issn.1008-0384.2014.03.010 [5] 李广昌. 龙岩莱豆生态特性及高产栽培措施 [J]. 吉林蔬菜, 2008(5):8−9. doi: 10.3969/j.issn.1672-0180.2008.05.005LI G C. Ecological characteristics and high-yield cultivation measures of Leymus chinensis in Longyan [J]. Jilin Vegetable, 2008(5): 8−9.(in Chinese) doi: 10.3969/j.issn.1672-0180.2008.05.005 [6] 姜永平, 宋益民, 章洪娟. 南通市地方特色蔬菜洋扁豆设施高效无公害栽培技术 [J]. 现代农业科技, 2013(15):101−102. doi: 10.3969/j.issn.1007-5739.2013.15.064JIANG Y P, SONG Y M, ZHANG H J. Efficient and pollution-free cultivation techniques of local vegetable lentils in Nantong city [J]. Xiandai Nongye Keji, 2013(15): 101−102.(in Chinese) doi: 10.3969/j.issn.1007-5739.2013.15.064 [7] 翁文燊. “香菇豆”的营养成分 [J]. 福建农业科技, 1990(3):43. doi: 10.13651/j.cnki.fjnykj.1990.03.031CHEN W S. Nutritional ingredients of Lima bean [J]. Fujian Agricultural Science and Technology, 1990(3): 43.(in Chinese) doi: 10.13651/j.cnki.fjnykj.1990.03.031 [8] 陈小红, 吴德武, 黎英. 超声波法提取莱豆总黄酮研究 [J]. 长江大学学报(自然科学版), 2014(12):74−76,8.CHEN X H, WU D W, LI Y. Study on extraction of total flavonoids from Phaseolus lunatus L. by ultrasonic wave [J]. Journal of Yangtze University (Natural Science Edition), 2014(12): 74−76,8.(in Chinese) [9] 雷蕾. 普通菜豆核心种质遗传结构及多样性研究[D]. 北京: 中国农业科学院, 2018.LEI L. Study on genetic structure and diversity of common bean core collection[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese) [10] KRUPA U. Main nutritional and antinutritional compounds of bean seeds - a review [J]. Polish Journal of Food and Nutrition Sciences, 2008, 58(2): 149−155. [11] ALMEIDA C, PEDROSA-HARAND A. High macro-collinearity between lima bean(Phaseolus lunatus L. ) and the common bean (P. vulgaris L. ) as revealed by comparative cytogenetic mapping [J]. TheorAppl Genet, 2013, 126(7): 1909−1916. doi: 10.1007/s00122-013-2106-9 [12] WINTER P, KAHL G. Molecular marker technologies for plant improvement [J]. World Journal of Microbiology and Biotechnology, 1995, 11(4): 438−448. doi: 10.1007/BF00364619 [13] LI G, QUIROS C F. Sequence- related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica [J]. Theoretical and Applied Genetics, 2001, 103(2): 455−461. [14] 陈方永, 谢丽雪, 倪海枝, 等. 卵圆型软条白沙枇杷变异种质鉴定研究 [J]. 植物遗传资源学报, 2014, 15(5):986−991. doi: 10.13430/j.cnki.jpgr.2014.05.010CHEN F Y, XIE L X, NI H Z, et al. Identification of egg-shaped Ruantiao Baisha loquat mutant germplasm [J]. Journal of Plant Genetic Resources, 2014, 15(5): 986−991.(in Chinese) doi: 10.13430/j.cnki.jpgr.2014.05.010 [15] 张坤, 周源洁, 李尧, 等. 基于SRAP和SCoT标记的猕猴桃种质遗传多样性分析及变异材料鉴定 [J]. 果树学报, 2021, 38(12):2059−2071. doi: 10.13925/j.cnki.gsxb.20210264ZHANG K, ZHOU Y J, LI Y, et al. Genetic diversity analysis of kiwifruit germplasm and identification of variant based on SRAP and SCoT markers [J]. Journal of Fruit Science, 2021, 38(12): 2059−2071.(in Chinese) doi: 10.13925/j.cnki.gsxb.20210264 [16] 李佳奇, 于卓, 杨东升, 等. 基于SRAP分子标记的冰草遗传连锁图谱构建 [J]. 西北植物学报, 2019, 39(1):76−83. doi: 10.7606/j.issn.1000-4025.2019.01.0076LI J Q, YU Z, YANG D S, et al. Construction of genetic linkage map for crested wheatgrass(Agropyron) based on SRAP molecular markers [J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(1): 76−83.(in Chinese) doi: 10.7606/j.issn.1000-4025.2019.01.0076 [17] 张明飞, 于卓, 于肖夏, 等. 四倍体马铃薯SRAP分子遗传连锁图谱的构建 [J]. 草业学报, 2019, 28(8):190−199. doi: 10.11686/cyxb2019230ZHANG M F, YU Z, YU X X, et al. Construction of a genetic linkage map for tetraploid potato based on SRAP markers [J]. Acta Prataculturae Sinica, 2019, 28(8): 190−199.(in Chinese) doi: 10.11686/cyxb2019230 [18] 张冬菊, 李世超, 吴鹏夫, 等. 基于表型和SRAP标记的切花菊品种遗传多样性分析 [J]. 园艺学报, 2014, 41(1):118−130. doi: 10.3969/j.issn.0513-353X.2014.01.014ZHANG D J, LI S C, WU P F, et al. Genetic diversity analysis in cut Chrysanthemum cultivars based on morphology and SRAP markers [J]. Acta Horticulturae Sinica, 2014, 41(1): 118−130.(in Chinese) doi: 10.3969/j.issn.0513-353X.2014.01.014 [19] 李晋华, 王少铭, 罗莉斯, 等. 基于SRAP标记的生姜种质资源遗传多样性分析 [J]. 分子植物育种, 2021:1−29.LI J H, WANG S M, LUO L S, et al. Genetic Diversity of Ginger Germplasm Resources Based on SRAP [J]. Molecular Plant Breeding, 2021: 1−29.(in Chinese) [20] 陶爱芬, 魏嘉俊, 刘星, 等. 应用SRAP标记绘制88份南瓜属种质资源DNA指纹图谱 [J]. 植物遗传资源学报, 2017, 18(2):225−232. doi: 10.13430/j.cnki.jpgr.2017.02.008TAO A F, WEI J J, LIU X, et al. Construction of molecular fingerprinting map for 88 accessions of Cucurbita by SRAP markers [J]. Journal of Plant Genetic Resources, 2017, 18(2): 225−232.(in Chinese) doi: 10.13430/j.cnki.jpgr.2017.02.008 [21] 李慧峰, 冉昆, 王涛. 利用SRAP标记构建山东省苹果资源指纹图谱 [J]. 沈阳农业大学学报, 2020, 51(4):470−475.LI H F, RAN K, WANG T. Molecular fingerprinting construction of Shandong Malus germplasms based on SRAP markers [J]. Journal of Shenyang Agricultural University, 2020, 51(4): 470−475.(in Chinese) [22] 王述民, 张亚芝, 魏淑红. 普通菜豆种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2006. [23] 刘凯, 陈汉才, 李桂花, 等. 豇豆种质资源遗传多样性和亲缘关系的SRAP和SSR分析 [J]. 中国农学通报, 2014, 30(31):156−163. doi: 10.11924/j.issn.1000-6850.2014-1615LIU K, CHEN H C, LI G H, et al. Genetic diversity and phylogenetic relationships analysis of cowpea germplasm resources by SRAP and SSR [J]. Chinese Agricultural Science Bulletin, 2014, 30(31): 156−163.(in Chinese) doi: 10.11924/j.issn.1000-6850.2014-1615 [24] 张春宝, 邱红梅, 赵洪锟, 等. 东北地区大豆种质遗传多样性的SRAP标记分析 [J]. 大豆科学, 2014, 33(1):17−22. doi: 10.11861/j.issn.1000-9841.2014.01.0017ZHANG C B, QIU H M, ZHAO H K, et al. Genetic diversity analysis of soybean germplasm in northeast region of China by SRAP markers [J]. Soybean Science, 2014, 33(1): 17−22.(in Chinese) doi: 10.11861/j.issn.1000-9841.2014.01.0017 [25] 侯万伟, 张小娟. 蚕豆SRAP标记的建立及遗传多样性分析 [J]. 分子植物育种, 2021, 19(10):3339−3343. doi: 10.13271/j.mpb.019.003339HOU W W, ZHANG X J. Establishment and genetic diversity analysis of SRAP markers in Vicia faba [J]. Molecular Plant Breeding, 2021, 19(10): 3339−3343.(in Chinese) doi: 10.13271/j.mpb.019.003339 [26] 刘明骞, 陈丽君, 丁美美, 等. 基于SRAP分子标记的剑豆遗传多样性分析 [J]. 中国农业大学学报, 2015, 20(2):58−66. doi: 10.11841/j.issn.1007-4333.2015.02.008LIU M Q, CHEN L J, DING M M, et al. Genetic diversity of Canavalia ensiformis(L.)DC. accessions revealed by SRAP markers [J]. Journal of China Agricultural University, 2015, 20(2): 58−66.(in Chinese) doi: 10.11841/j.issn.1007-4333.2015.02.008 [27] MARTINS M, TENREIRO R, OLIVEIRA M M. Genetic relatedness of Portuguese almond cultivars assessed by RAPD and ISSR markers [J]. Plant Cell Reports, 2003, 22(1): 71−78. doi: 10.1007/s00299-003-0659-9