Effect of Composting Chamaecrista rotundifolia on Microbial Community in Soil
-
摘要:
目的 探明豆科绿肥圆叶决明翻压对果园红壤细菌群落的影响规律。 方法 以空白对照(CK)和添加狼尾草(P处理)为对照,采用模拟培养试验,研究添加圆叶决明(J处理)后培养10~180 d果园红壤细菌群落数量、组成、多样性及结构的动态变化。 结果 25 ℃恒温恒湿培养,门、纲、目、科和属水平细菌种群数量的变化主要发生在培养10~60 d,80~140 d处理间相对丰度具有显著差异的细菌数量减少,至培养180 d,3种处理所有细菌的相对丰度无显著差异。变形菌、酸杆菌和放线菌为3种处理相对丰度占比位于前3的优势细菌。与CK相比,P处理和J处理变形菌相对丰度随培养时间延长逐渐降低,而酸杆菌门相对丰度则先升后降,J处理放线菌门相对丰度随着培养时间延长而升高,P处理和J处理的变形菌、放线菌、绿弯菌、厚壁菌、拟杆菌和疣微菌随时间的变化均可用三次或二次函数拟合。P处理和J处理提高了红壤细菌ACE、Chao1和Shannon指数,降低了Simpson指数。 结论 添加圆叶决明改变果园红壤细菌群落组成和结构,提高了果园红壤细菌群落的丰度和多样性,但添加圆叶决明和添加杂交狼尾草之间细菌群落结构差异不大。 Abstract:Objective Effect of applying Chamaecrista rotundifolia plant materials to decompose as green manure on the microbial communities in red orchard soil was studied. Method In a simulated experiment, red soil collected from an orchard was used as blank control (CK) or as treatments with added P. americanum×P. purpureum (P) or C. rotundifolia (J). After 10-180d of incubation at 25 ℃ and constant humidity, the soils were sampled 9 times for Illumina high-throughput sequencing. Results Significant alterations were observed in the microbial populations at phylum, class, order, family, and genus levels from 10d to 60d. The relative abundance decreased in 80-140d and became similar for all samples by 180d with Proteobacteria, Acidobacteria, and Actinomycetes being the dominant microbes. Proteobacteria populations in P and J became lower than in CK, while Acidobacteria rose at first and then declined as the incubation prolonged. Actinobacteria in J increased during incubation, whereas Proteobacteria, Actinomyces, Chloroflexi, Firmicutes, Bacteroides, and Verrucobacterium in P and J followed a pattern of either 3 or 2 regression function. Both P and J raised the ACE, Chao1, and Shannon indices, but lowered the Simpson index. Conclusion Composting round-leaf, short-lived perennial cassia C. rotundifolia changed the composition and structure and increased the abundance and diversity of the bacterial community in the red orchard soil. However, no significantly different effects induced by the applications of C. rotundifolia and P. americanum×P. purpureum were found. -
Key words:
- Chamaecrista rotundifolia /
- soil microorganisms /
- bacterial diversity /
- bacterial community /
- orchard /
- red soil
-
图 1 不同处理门水平细菌的相对丰度
由于培养100 d具有显著性差异的细菌数量减少,到180 d不存在具有显著性差异的细菌,因此数据只取至培养140 d,即取8次取样的数据,下同。
Figure 1. Bacterial relative abundance at phylum level by treatments
Since bacteria count after 100 d of incubation showed significant decreases and not on 180 d, only data up to 140 d are presented,that is, data from eight samples are listed。 Same for below.
表 1 不同处理间相对丰度具有统计学差异的果园红壤细菌种群数量
Table 1. Bacterial population with statistically different relative abundance in red orchard soil by treatments
分类水平Classification level 编号No. 比对组Comparison group 不同处理时间细菌种群数Bacterial population at different treatment times/种 10 d 20 d 30 d 40 d 60 d 80 d 100 d 140 d 180 d 平均Average 门 Phylum Ⅰ CK VS J 11 13 12 5 14 0 1 0 0 6.22 Ⅱ CK VS P 14 11 8 7 14 0 0 1 0 6.11 Ⅲ P VS J 4 2 4 2 6 0 1 1 0 2.22 纲 Class Ⅰ CK VS J 39 32 26 20 42 7 1 3 0 18.89 Ⅱ CK VS P 37 33 27 22 48 9 0 5 0 20.11 Ⅲ P VS J 11 4 7 2 14 4 1 3 0 5.11 目 Order Ⅰ CK VS J 54 40 37 21 47 9 2 5 0 23.89 Ⅱ CK VS P 49 42 40 24 46 10 1 8 0 24.44 Ⅲ P VS J 19 9 10 2 14 6 1 5 0 7.33 科 Family Ⅰ CK VS J 94 74 68 48 72 23 2 6 0 43.00 Ⅱ CK VS P 81 69 66 54 74 27 1 7 0 42.11 Ⅲ P VS J 31 17 20 10 23 12 1 7 0 13.44 属 Genus Ⅰ CK VS J 92 67 63 35 72 12 2 6 0 38.78 Ⅱ CK VS P 79 59 64 38 72 13 2 7 0 37.11 Ⅲ P VS J 36 16 19 8 21 8 0 7 0 12.78 CK为对照;P为添加杂交狼尾草处理;J为添加圆叶决明处理。10、20、30、40、60、80 、100、140和180 d为土壤培养天数。CK: blank control; P: treatment with P. americanum×P. purpureum; J: treatment with C. rotundifolia. 10, 20, 30, 40, 60, 80, 100, 140, and 180d: number of incubation days. 表 2 门水平不同处理细菌相对丰度随时间变化的回归方程
Table 2. Regression equations on bacterial relative abundance at phylum level by treatments
处理Treatment 细菌门Bacterial phylum R2 F P 方程式Equation CK 疣微菌 Verrucomicrobia 0.702 11.98 0.013 y=−0.599x+6.678 浮霉菌 Planctomycetes 0.853 15.88 0.007 y=0.010x3−0.061x2−0.176x+2.125 J 变形菌 Proteobacteria 0.973 19.74 0.007 y=−0.327x3+3.954x2−14.467x+63.172 放线菌 Actinobacteria 0.857 14.31 0.009 y=0.474x2−2.669x+8.984 绿弯菌 Chloroflexi 0.908 11.75 0.013 y=0.104x3−1.196x2+4.331x+0.846 厚壁菌 Firmicutes 0.979 53.14 0.000 y=0.096x3−0.925x2+2.585x−1.025 拟杆菌 Bacteroidetes 0.849 14.96 0.008 y=−1.093x+9.938 疣微菌 Verrucomicrobia 0.914 56.66 0.000 y=−0.069x2+0.129x+4.559 浮霉菌 Planctomycetes 0.761 9.68 0.021 y=0.030x2−0.378x+ 2.758 P 变形菌 Proteobacteria 0.910 13.46 0.015 y=−3×10−5x3+0.0073x2−0.456x+53.82 放线菌 Actinobacteria 0.803 7.68 0.030 y=0.617x2−5.00x+15.64 绿弯菌 Chloroflexi 0.875 11.056 0.021 y=0.090x3−1.138x2+4.319x+2.161 芽单胞菌Gemmatimonadetes 0.835 6.77 0.048 y=0.059x3−0.695x2+2.116x+2.527 厚壁菌 Firmicutes 0.843 10.89 0.015 y=0.170x2−1.169x+2.832 拟杆菌 Bacteroidetes 0.884 16.53 0.006 y=−0.174x2+0.561x+6.842 疣微菌 Verrucomicrobia 0.856 11.25 0.020 y=0.035x3−0.571x2+2.365x+1.678 表 3 不同处理土壤细菌多样性指数
Table 3. Soil bacterial diversity index under treatments
指标Index 处理Treatment 培养时间 Incubation time/d 10 20 30 40 60 80 100 140 ACE CK 1 689.00±13.50 b 1 480±3.61 b 1 629.00±16.50 b 1 615.33±45.83 b 1 266.33±40.99 b 1 870.33±270.09 b 1 762.00±308.58 a 1 728.33±48.42 a P 1 800.67±6.89 a 1 624.67±5.70 a 1 821.33±7.26 a 1 800.67±5.49 a 1 762.00±11.02 a 2 584.00±23.12 a 1 944.33±36.35 a 1 886.67±44.18 a J 1 776.33±11.92 a 1 626.67±6.12 a 1 818.00±3.06 a 1 785.33±5.84 a 1 748.33±11.62 a 2 504.33±57.17 a 1 865.67±86.34 a 1 854.67±69.53 a Chao1 CK 1 714.67±16.37 b 1 511.33±8.09 b 1 650.00±10.26 b 1 650.33±39.18 b 1 295.00±58.00 b 1 903.67±273.09 b 1 764.33±316.83 a 1 743.00±52.08 a P 1 806.00±7.00 a 1 638.67±6.84 a 1 833.67±10.40 a 1 824.33±1.86 a 1 787.67±16.02 a 2 579.00±33.23 a 1 944.33±48.21 a 1 929.33±66.20 a J 1 793.00±18.77 a 1 639.00±13.50 a 1 829.67±6.89 a 1 799.33±8.82 a 1 775.67±14.33 a 2 511.67±71.66 a 1 879.00±85.51 a 1 858.33±67.17 a Simpson CK 0.010±0.001 a 0.015±0.002 a 0.014±0.002 a 0.013±0.003 a 0.018±0.004 a 0.013±0.002 a 0.025±0.006 a 0.015±0.001 a P 0.006±0.000 b 0.007±0.001 b 0.006±0.000 b 0.005±0.000 b 0.005±0.000 b 0.007±0.000 b 0.020±0.003 a 0.014±0.001 a J 0.007±0.000 b 0.006±0.000 b 0.007±0.000 b 0.008±0.001 b 0.007±0.000 b 0.011±0.001 ab 0.016±0.001 a 0.015±0.003 a Shannon CK 6.14±0.03 a 5.90±0.07 b 5.92±0.10 b 5.82±0.19 a 5.19±0.17 b 5.69±0.30 a 5.25±0.39 a 5.30±0.06 a P 6.15±0.02 a 6.12±0.04 a 6.25±0.02 a 6.22±0.03 a 6.25±0.00 a 6.11±0.01 a 5.32±0.08 a 5.42±0.01 a J 6.04±0.05 a 6.14±0.03 a 6.16±0.03 a 6.10±0.10 a 6.18±0.02 a 5.98±0.03 a 5.35±0.04 a 5.33±0.014 a 表 4 不同处理细菌多样性随时间变化的回归方程
Table 4. Regression equations on bacterial diversity of treatments
处理Treatment 指标Index R2 F P 方程式Equation J ACE 0.399 4.420 0.015 y=2184.10−557.18x3+171.77x2−13.49x Chao1 0.409 4.610 0.013 y=2206.64−566.82x3+174.80x2−13.75x Simpson 0.679 22.200 0.00 y=0.007−0.001x2+0.0001x Shannon 0.819 47.540 0.00 y=5.81+0.249x2−0.04x P ACE 0.468 5.880 0.005 y=2294.81−667.47x3+202.20x2−15.71x Chao1 0.461 5.700 0.005 y=2253.50−612.06x3+187.45x2−14.58x Simpson 0.556 13.170 0.000 y=0.009−0.002x2+0.0001x Shannon 0.798 41.580 0.000 y=5.89+0.234x2−0.041x x为培养时间,y为细菌群落Alpha多样性指数。P为显著性,<0.05表示差异显著。x: incubation time; y: alpha diversity index of bacterial community. P: difference at 5% level. -
[1] 林先贵, 陈瑞蕊, 胡君利. 土壤微生物资源管理、应用技术与学科展望 [J]. 生态学报, 2010, 30(24):7029−7037.LIN X G, CHEN R R, HU J L. The management and application of soil microbial resources and the perspectives of soil microbiology [J]. Acta Ecologica Sinica, 2010, 30(24): 7029−7037.(in Chinese) [2] 唐婧, 徐小蓉, 商传禹, 等. 南明河城区河段细菌多样性与环境因子的关系 [J]. 微生物学报, 2015, 55(8):1050−1059. doi: 10.13343/j.cnki.wsxb.20140568TANG J, XU X R, SHANG C Y, et al. Association of bacterial diversity in city area of Nanming River with environmental factors [J]. Acta Microbiologica Sinica, 2015, 55(8): 1050−1059.(in Chinese) doi: 10.13343/j.cnki.wsxb.20140568 [3] FINN D, KOPITTKE P M, DENNIS P G, et al. Microbial energy and matter transformation in agricultural soils [J]. Soil Biology and Biochemistry, 2017, 111: 176−192. doi: 10.1016/j.soilbio.2017.04.010 [4] LUXHØI J, BRUUN S, STENBERG B, et al. Prediction of gross and net nitrogen mineralization-immobilization-turnover from respiration [J]. Soil Science Society of America Journal, 2006, 70(4): 1121−1128. doi: 10.2136/sssaj2005.0133 [5] TORABIAN S, FARHANGI-ABRIZ S, DENTON M D. Do tillage systems influence nitrogen fixation in legumes? A review [J]. Soil and Tillage Research, 2019, 185: 113−121. doi: 10.1016/j.still.2018.09.006 [6] 曹卫东, 包兴国, 徐昌旭, 等. 中国绿肥科研60年回顾与未来展望 [J]. 植物营养与肥料学报, 2017, 23(6):1450−1461. doi: 10.11674/zwyf.17291CAO W D, BAO X G, XU C X, et al. Reviews and prospects on science and technology of green manure in China [J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1450−1461.(in Chinese) doi: 10.11674/zwyf.17291 [7] GEISSELER D, HORWATH W R, DOANE T A. DANIEL G, WILLIAM R H, TIMOTHY A D. Significance of organic nitrogen uptake from plant residues by soil microorganisms as affected by carbon and nitrogen availability [J]. Soil Biology and Biochemistry, 2009, 41(6): 1281−1288. doi: 10.1016/j.soilbio.2009.03.014 [8] DUCHENE O, VIAN J F, CELETTE F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review [J]. Agriculture, Ecosystems & Environment, 2017, 240: 148−161. [9] DIACONOM, PERSIANI AL, CANALI S, et al. Agronomic performance and sustainability indicators in organic tomato combining different agro-ecological practices [J]. Nutrient Cycling in Agroecosystems, 2018, 112(1): 101−117. doi: 10.1007/s10705-018-9933-7 [10] ELFSTRAND S, HEDLUND K, MåRTENSSON A. Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring [J]. Applied Soil Ecology, 2007, 35(3): 610−621. doi: 10.1016/j.apsoil.2006.09.011 [11] PAUL E A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization [J]. Soil Biology and Biochemistry, 2016, 98: 109−126. doi: 10.1016/j.soilbio.2016.04.001 [12] 刘国顺, 李正, 敬海霞, 等. 连年翻压绿肥对植烟土壤微生物量及酶活性的影响 [J]. 植物营养与肥料学报, 2010, 16(6):1472−1478. doi: 10.11674/zwyf.2010.0624LIU G S, LI Z, JING H X, et al. Effects of consecutive turnover of green manures on soil microbial biomass and enzyme activity [J]. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1472−1478.(in Chinese) doi: 10.11674/zwyf.2010.0624 [13] 张黎明, 邓小华, 周米良, 等. 不同种类绿肥翻压还田对植烟土壤微生物量及酶活性的影响 [J]. 中国烟草科学, 2016, 37(4):13−18.ZHANG L M, DENG X H, ZHOU M L, et al. Effects of different green manures on microbial biomass and enzyme activities of tobacco-planting soil [J]. Chinese Tobacco Science, 2016, 37(4): 13−18.(in Chinese) [14] 佀国涵, 赵书军, 王瑞, 等. 连年翻压绿肥对植烟土壤物理及生物性状的影响 [J]. 植物营养与肥料学报, 2014, 20(4):905−912.SI G H, ZHAO S J, WANG R, et al. Effects of consecutive overturning of green manure on soil physical and biological characteristics in tobacco-planting fields [J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 905−912.(in Chinese) [15] 陈晓波, 官会林, 郭云周, 等. 绿肥翻压对烟地红壤微生物及土壤养分的影响 [J]. 中国土壤与肥料, 2011(4):74−78. doi: 10.3969/j.issn.1673-6257.2011.04.017CHEN X B, GUAN H L, GUO Y Z, et al. The effect of plowing under green manure on the soil microorganism and fertility in tobacco cultivation red soil [J]. Soil and Fertilizer Sciences in China, 2011(4): 74−78.(in Chinese) doi: 10.3969/j.issn.1673-6257.2011.04.017 [16] 白小军, 冯海萍, 张丽娟, 等. 种植及翻压绿肥对设施土壤养分及微生物区系的影响 [J]. 北方园艺, 2014(23):144−147.BAI X J, FENG H P, ZHANG L J, et al. Effect of the planting and green manure application on soil nutrients and microbial flora in greenhouse [J]. Northern Horticulture, 2014(23): 144−147.(in Chinese) [17] ZHENG J S, HU J M, WEI X H, et al. Effects of green manure returning on soil microbial biomass carbon and mineralization of organic carbon in smash ridging paddy field [J]. Chinese Journal of Eco-Agriculture, 2021, 29(4): 691−703. [18] 蒋宇航, 林生, 林伟伟, 等. 不同肥料对退化茶园根际土壤微生物代谢活性和群落结构的影响 [J]. 生态学杂志, 2017, 36(10):2894−2902. doi: 10.13292/j.1000-4890.201710.034JIANG Y H, LIN S, LIN W W, et al. Effects of different fertilizer applications on microbial metabolic activity and community structure in tea rhizosphere soil [J]. Chinese Journal of Ecology, 2017, 36(10): 2894−2902.(in Chinese) doi: 10.13292/j.1000-4890.201710.034 [19] 应朝阳, 罗旭辉, 黄毅斌, 等. 闽引圆叶决明适应性研究 [J]. 草地学报, 2010, 18(1):137−140.YING Z Y, LUO X H, HUANG Y B, et al. Study on adaptability of Chamaecrista rotundifolia Greene. cv. Minyin [J]. Acta Agrestia Sinica, 2010, 18(1): 137−140.(in Chinese) [20] 罗旭辉, 詹杰, 王义祥, 等. 侵蚀果园长期植草的生态效益分析 [J]. 草地学报, 2011, 19(5):729−734.LUO X H, ZHAN J, WANG Y X, et al. Soil & water conservation function and comprehensive benefits of intercropping forage in eroded fruit garden [J]. Acta Agrestia Sinica, 2011, 19(5): 729−734.(in Chinese) [21] ZHONG Z M, HUANG X S, FENG D Q, et al. Long-term effects of legume mulching on soil chemical properties and bacterial community composition and structure [J]. Agriculture, Ecosystems & Environment, 2018, 268: 24−33. [22] 钟珍梅, 杨庆, 游小凤, 等. 圆叶决明添加量对红壤可溶性氮及酶活性的影响 [J]. 草地学报, 2022, 30(3):622−630.ZHONG Z M, YANG Q, YOU X F, et al. Effects of Additions of Chamaecrista rotundifolia on the Soluble Nitrogen and Enzyme Activity of red soil [J]. Acta Agrestia Sinica, 2022, 30(3): 622−630.(in Chinese) [23] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data [J]. Nature Methods, 2010, 7(5): 335−336. doi: 10.1038/nmeth.f.303 [24] EDGAR R C, HAAS B J, CLEMENTE J C, et al. UCHIME improves sensitivity and speed of chimera detection [J]. Bioinformatics, 2011, 27(16): 2194−2200. doi: 10.1093/bioinformatics/btr381 [25] QUAST C, PRUESSE E, YILMAZ P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools [J]. Nucleic Acids Research, 2013, 41(D1): D590−D596. [26] SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities [J]. Applied and Environmental Microbiology, 2009, 75(23): 7537−7541. doi: 10.1128/AEM.01541-09 [27] FIERER N. Embracing the unknown: Disentangling the complexities of the soil microbiome [J]. Nature Reviews Microbiology, 2017, 15(10): 579−590. doi: 10.1038/nrmicro.2017.87 [28] 万水霞, 唐杉, 蒋光月, 等. 紫云英与化肥配施对土壤微生物特征和作物产量的影响 [J]. 草业学报, 2016, 25(6):109−117. doi: 10.11686/cyxb2016030WAN S X, TANG S, JIANG G Y, et al. Effects of Chinese milk vetch manure and fertilizer on soil microbial characteristics and yield of rice [J]. Acta Prataculturae Sinica, 2016, 25(6): 109−117.(in Chinese) doi: 10.11686/cyxb2016030 [29] 林新坚, 林斯, 邱珊莲, 等. 不同培肥模式对茶园土壤微生物活性和群落结构的影响 [J]. 植物营养与肥料学报, 2013, 19(1):93−101.LIN X J, LIN S, QIU S L, et al. Effect of different fertilization strategies on structure and activity of microbial community in tea orchard soils [J]. Plant Nutrition and Fertilizer Science, 2013, 19(1): 93−101.(in Chinese) [30] SIX J, CARPENTIER A, VAN KESSEL C, et al. Impact of elevated CO2 on soil organic matter dynamics as related to changes in aggregate turnover and residue quality [J]. Plant and Soil, 2001, 234(1): 27−36. doi: 10.1023/A:1010504611456 [31] TAO J M, LIU X D, LIANG Y L, et al. Maize growth responses to soil microbes and soil properties after fertilization with different green manures [J]. Applied Microbiology and Biotechnology, 2017, 101(3): 1289−1299. doi: 10.1007/s00253-016-7938-1 [32] NANNIPIERI P, ASCHER J, CECCHERINI M T, et al. Microbial diversity and soil functions [J]. European Journal of Soil Science, 2003, 54(4): 655−670. doi: 10.1046/j.1351-0754.2003.0556.x [33] CUI H, ZHOU Y, GU Z, et al. The combined effects of cover crops and symbiotic microbes on phosphatase gene and organic phosphorus hydrolysis in subtropical orchard soils [J]. Soil Biology and Biochemistry, 2015, 82: 119−126. doi: 10.1016/j.soilbio.2015.01.003 [34] SUL W, ASUMING-BREMPONG S, WANG Q, et al. Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon [J]. Soil Biology and Biochemistry, 2013, 65: 33−38. doi: 10.1016/j.soilbio.2013.05.007 [35] CABAN J R, KUPPUSAMY S, KIM J H, et al. Green manure amendment enhances microbial activity and diversity in antibiotic-contaminated soil [J]. Applied Soil Ecology, 2018, 129: 72−76. doi: 10.1016/j.apsoil.2018.04.013 [36] 林叶春, 李雨, 陈伟, 等. 绿肥压青对喀斯特地区植烟土壤细菌群落特征的影响 [J]. 中国土壤与肥料, 2018(3):161−167. doi: 10.11838/sfsc.20180325LIN Y C, LI Y, CHEN W, et al. Effects of green manures on the bacterial community characteristics of the rhizosphere soil in flue-cured tobacco [J]. Soil and Fertilizer Sciences in China, 2018(3): 161−167.(in Chinese) doi: 10.11838/sfsc.20180325