• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

猪伪狂犬病毒荧光重组酶介导核酸扩增快速检测方法的建立与应用

谢明杰 康龙滨 陈秋勇 吴学敏 王隆柏 周伦江 刘玉涛

谢明杰,康龙滨,陈秋勇,等. 猪伪狂犬病毒荧光重组酶介导核酸扩增快速检测方法的建立与应用 [J]. 福建农业学报,2024,39(7):753−758 doi: 10.19303/j.issn.1008-0384.2024.07.001
引用本文: 谢明杰,康龙滨,陈秋勇,等. 猪伪狂犬病毒荧光重组酶介导核酸扩增快速检测方法的建立与应用 [J]. 福建农业学报,2024,39(7):753−758 doi: 10.19303/j.issn.1008-0384.2024.07.001
XIE M J, KANG L B, CHEN Q Y, et al. A Rapid Real Time Fluorescence Recombinase-aided Amplification Method for Detecting Porcine Pseudorabies Virus [J]. Fujian Journal of Agricultural Sciences,2024,39(7):753−758 doi: 10.19303/j.issn.1008-0384.2024.07.001
Citation: XIE M J, KANG L B, CHEN Q Y, et al. A Rapid Real Time Fluorescence Recombinase-aided Amplification Method for Detecting Porcine Pseudorabies Virus [J]. Fujian Journal of Agricultural Sciences,2024,39(7):753−758 doi: 10.19303/j.issn.1008-0384.2024.07.001

猪伪狂犬病毒荧光重组酶介导核酸扩增快速检测方法的建立与应用

doi: 10.19303/j.issn.1008-0384.2024.07.001
基金项目: 福建省自然科学基金项目(2023J01364);福建省农业高质量发展超越“5511”协同创新工程项目(XTCXGC2021008);福建省农业科学院畜禽防控科技创新团队建设项目(CXTD2021007-2);福建省科技计划公益类专项(2023R1024001)
详细信息
    作者简介:

    谢明杰(1998 —),女,硕士研究生,主要从事猪病原学及免疫学研究,E-mail:1418998435@qq.com

    通讯作者:

    周伦江(1973 —),男,博士,研究员,主要从事猪传染病防治研究,E-mail:lunjiang@163.com

    刘玉涛(1965 —),男,高级兽医师,主要从事猪传染病防治研究,E-mail:obaonm@163.com

  • 中图分类号: S855.3

A Rapid Real Time Fluorescence Recombinase-aided Amplification Method for Detecting Porcine Pseudorabies Virus

  • 摘要:   目的  基于荧光重组酶介导核酸扩增(Recombinase-aided amplification, RAA)技术,建立一种猪伪狂犬病毒(Porcine pseudorabies virus, PRV)快速检测方法。  方法  根据PRV gE基因序列,设计特异性引物及探针,优化扩增体系,建立PRV荧光重组酶介导核酸扩增检测方法,检验其特异性、敏感性和重复性,应用该方法对临床样品进行检测。  结果  该方法在43 ℃恒温反应23 min即可完成PRV核酸扩增,最低检出限为111 copies·μL−1;与猪繁殖与呼吸综合征病毒(Porcine reproductive and respiratory syndrome virus, PRRSV)、猪流行性腹泻病毒(Porcine epidemic diarrhea virus, PEDV)、猪轮状病毒(Porcine rotavirus, PoRV)、猪传染性胃肠炎病毒(Transmissible gastroenteritis virus, TGEV)、猪圆环病毒2型(Porcine circovirus 2, PCV2)、猪圆环病毒3型(Porcine circovirus 3, PCV3)均无交叉反应。重复性试验显示,组内和组间变异系数均小于5%;40份临床样品检测结果显示PRV阳性率为15%(6/40),检测结果与常规聚合酶链式反应(PCR)一致。  结论  成功建立了简便快速、高效准确的PRV实时荧光RAA检测方法,为PRV的快速检测和流行病学调查提供了新的检测手段。
  • 图  1  荧光RAA引物对筛选结果

    Figure  1.  Primer screening for fluorescent RAA

    图  2  荧光RAA引物浓度筛选

    Figure  2.  Primer concentration for fluorescent RAA

    图  3  荧光RAA探针浓度筛选

    Figure  3.  Probe concentration for fluorescent RAA

    图  4  荧光RAA反应温度筛选

    Figure  4.  Reaction temperature for fluorescent RAA

    图  5  荧光RAA特异性试验

    Figure  5.  Specificity of fluorescent RAA

    图  6  荧光RAA敏感性试验

    Figure  6.  Sensitivity of fluorescent RAA

    图  7  临床样品PRV的PCR和RAA检测

    A:临床样品RAA结果。B:临床样品PCR结果;M:DL 2000 Marker;1:阴性对照;2:阳性对照;3~42:临床样品。

    Figure  7.  PRV detections by conventional PCR and fluorescent RAA on clinical samples

    A: results on clinical samples by fluorescent RAA; B: results on clinical samples by conventional PCR; M: DL 2000 marker; 1: negative control ; 2: positive control ; 3–42: clinical samples.

    表  1  疑似伪狂犬病料收集的来源信息

    Table  1.   Tissue collection of suspected diseased pigs

    地区
    Region
    样本数(份)/来源猪场(个)
    Samples/Farms
    宁德 Ningde 4/2
    泉州 Quanzhou 5/3
    漳州 Zhangzhou 10/4
    南平 Nanping 12/5
    龙岩 Longyan 9/4
    合计 Total 40/18
    下载: 导出CSV

    表  2  PRV荧光RAA引物与探针

    Table  2.   Primers and probes of PRV for fluorescent RAA

    引物/探针
    Primer/Probe
    引物序列(5'-3')
    Sequence(5'-3')
    用途
    Usage
    PRV-F1 CGATCTACGTGGACGGCATCACGACGCCG 识别并结合到PRV-gE DNA片段的特定区域,启动扩增过程。
    PRV-R1 TAGTAGTCCTCGTGCGTGGGCAGGCTGGTGTA
    PRV-F2 CGAGTACGTCACGGTCATCAAGGAGCTGAC
    PRV-R2 GCTGGTGTACACCGGAGAGAGCATGTGCGT
    PRV-Probe GCTGTTTGTGCTGGCGCTGGGCTCCTTCG[FAM-dT]
    [THF]A[BHQ1-dT]GACGTGCGTCGTC-C3
    用于检测和量化扩增过程中产生的特定核酸序列
    下载: 导出CSV

    表  3  荧光重复性试验结果

    Table  3.   Repeatability of fluorescent RAA

    质粒浓度
    Plasmid
    concentration/
    (copies·μL−1
    组内变异试验
    Intra-assay variability
    组间变异试验
    Inter-assay variability
    循环数
    $ \overline X$+SD
    变异系数CV/% 循环数
    $ \overline X $+SD
    变异系数CV/%
    1.11×104 16.9±0.33 1.98 17.27±0.77 4.52
    1.11×105 15.09±0.34 2.31 12.09±0.49 4.09
    1.11×106 9.38±0.25 2.76 8.74±0.30 3.45
    下载: 导出CSV
  • [1] CHEN Q Y, WU X M, CHE Y L, et al. The immune efficacy of inactivated pseudorabies vaccine prepared from FJ-2012ΔgE/gI strain [J]. Microorganisms, 2022, 10(10): 1880. doi: 10.3390/microorganisms10101880
    [2] HANSON R P. The history of pseudorabies in the United States [J]. Journal of the American Veterinary Medical Association, 1954, 124(925): 259−261.
    [3] HU D F, LV L, ZHANG Z D, et al. Seroprevalence and associated risk factors of pseudorabies in Shandong Province of China [J]. Journal of Veterinary Science, 2016, 17(3): 361−368. doi: 10.4142/jvs.2016.17.3.361
    [4] POMERANZ L E, REYNOLDS A E, HENGARTNER C J. Molecular biology of pseudorabies virus: Impact on neurovirology and veterinary medicine [J]. Microbiology and Molecular Biology Reviews: MMBR, 2005, 69(3): 462−500. doi: 10.1128/MMBR.69.3.462-500.2005
    [5] 周仁峰. 猪伪狂犬病病毒特点及分离鉴定 [J]. 畜牧兽医科学(电子版), 2022, (7):72−74.

    ZHOU R F. Characteristics and isolation and identification of porcine pseudotumor rabies [J]. Graziery Veterinary Sciences: Electronic Version, 2022(7): 72−74. (in Chinese)
    [6] ZHANG C L, GUO L H, JIA X R, et al. Construction of a triple gene-deleted Chinese Pseudorabies virus variant and its efficacy study as a vaccine candidate on suckling piglets [J]. Vaccine, 2015, 33(21): 2432−2437. doi: 10.1016/j.vaccine.2015.03.094
    [7] 王刚, 范伟兴, 刘坤, 等. 布鲁氏菌病血清学检测方法优缺点对比 [J]. 中国动物检疫, 2021, 38(5):72−75.

    WANG G, FAN W X, LIU K, et al. Comparison on the serological detection methods for brucellosis [J]. China Animal Health Inspection, 2021, 38(5): 72−75. (in Chinese)
    [8] 王恩惠. 基于RAA-CRISPR/Cas13a的猪伪狂犬病毒检测方法的建立及初步应用[D]. 泰安: 山东农业大学, 2023.

    WANG E H. Establishment and preliminary application of detection method of porcine pseudorabies virus based on raa-crispr/cas13a[D]. Taian: Shandong Agricultural University, 2023. (in Chinese)
    [9] 张众, 王新茹, 殷健, 等. 猪伪狂犬病毒快速检测方法研究进展 [J]. 现代畜牧兽医, 2023, (9):92−96.

    ZHANG Z, WANG X R, YIN J, et al. Advances in rapid detection methods for porcine pseudorabies virus [J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2023(9): 92−96. (in Chinese)
    [10] SMITH C J, OSBORN A M. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology [J]. FEMS Microbiology Ecology, 2009, 67(1): 6−20. doi: 10.1111/j.1574-6941.2008.00629.x
    [11] 苏金辉, 邓云贵, 夏冰. 猪伪狂犬病病毒经典毒株与变异毒株双重实时荧光定量PCR方法的建立及应用 [J]. 黑龙江畜牧兽医, 2023, (21):84−89.

    SU J H, DENG Y G, XIA B. Establishment and application of dual real-time quantitative PCR method for classical and variant strains of porcine pseudorabies virus [J]. Heilongjiang Animal Husbandry and Veterinary Medicine, 2023(21): 84−89. (in Chinese)
    [12] FAN X X, LI L, ZHAO Y G, et al. Clinical validation of two recombinase-based isothermal amplification assays (RPA/RAA) for the rapid detection of African swine fever virus [J]. Frontiers in Microbiology, 2020, 11: 1696. doi: 10.3389/fmicb.2020.01696
    [13] ZHANG J, LIU J, AN D, et al. A novel recombinase polymerase amplification assay for rapid detection of epidemic fowl adenovirus [J]. Poultry Science, 2020, 99(12): 6446−6453. doi: 10.1016/j.psj.2020.08.021
    [14] TU F, ZHANG Y N, XU S K, et al. Detection of pseudorabies virus with a real-time recombinase-aided amplification assay [J]. Transboundary and Emerging Diseases, 2022, 69(4): 2266−2274. doi: 10.1111/tbed.14241
    [15] SUN Y, LIANG W, LIU Q Y, et al. Epidemiological and genetic characteristics of swine pseudorabies virus in mainland China between 2012 and 2017 [J]. PeerJ, 2018, 6: e5785. doi: 10.7717/peerj.5785
    [16] 华涛, 唐波, 黄江, 等. 猪伪狂犬病毒Real-time PCR检测方法的建立和弱毒疫苗病毒含量的检测 [J]. 江西农业学报, 2019, 31(9):73−78.

    HUA T, TANG B, HUANG J, et al. Establishment of real-time PCR assay of pseudorabies virus and viral load detection of PRV attenuated vaccine [J]. Acta Agriculturae Jiangxi, 2019, 31(9): 73−78. (in Chinese)
    [17] 施宁雪, 靳晶豪, 陈孝仁. 重组酶聚合酶扩增技术及其在生命科学领域的应用 [J]. 江西农业学报, 2021, 33(10):62−72.

    SHI N X, JIN J H, CHEN X R. Recombinase polymerase amplification technology and its application in field of life sciences [J]. Acta Agriculturae Jiangxi, 2021, 33(10): 62−72. (in Chinese)
    [18] YANG Y, QIN X D, ZHANG W, et al. Development of an isothermal recombinase polymerase amplification assay for rapid detection of pseudorabies virus [J]. Molecular and Cellular Probes, 2017, 33: 32−35. doi: 10.1016/j.mcp.2017.03.005
    [19] 兰德松. 辽宁省PRV的分离鉴定与流行病学调查及PRV新型检测方法的研究与应用[D]. 哈尔滨: 东北农业大学, 2021.

    LAN D S. Isolation, identification and epidemiological investigation of PRV in Liaoning Province and research and application of new detection method of PRV[D]. Harbin: Northeast Agricultural University, 2021. (in Chinese)
    [20] 汪一平, 游一, 李天宇, 等. 豫西地区猪伪狂犬病的分子流行病学调查与病毒分离鉴定 [J]. 畜牧与兽医, 2021, 53(9):95−102.

    WANG Y P, YOU Y, LI T Y, et al. Molecular epidemiological investigation of swine pseudorabies and virus identification in western Henan Province [J]. Animal Husbandry & Veterinary Medicine, 2021, 53(9): 95−102. (in Chinese)
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  85
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-11
  • 修回日期:  2024-06-14
  • 网络出版日期:  2024-08-15
  • 刊出日期:  2024-07-01

目录

    /

    返回文章
    返回